Communication
Dalton Transactions
electrophilic active oxidant capable of exchanging with exogen-
ous water prior to an electrophilic attack on the aromatic ring,
(c) S. Chatterjee and T. K. Paine, Angew. Chem., Int. Ed.,
2015, 54, 9338.
1
8
to provide the partially O labeled phenol (R-L-OH), whose
hydroxylation yields are substituent-dependent (step c). It has
been reported that a well-defined mononuclear non-heme
iron(IV)-oxo complex shows a poor nucleophilic oxidative reac-
tion toward 2-phenylpropionaldehyde compared with (hydro)-
5 (a) S. Sahu, L. R. Widger, M. G. Quesne, S. P. de Visser,
H. Matsumura, P. Moënne-Loccoz, M. A. Siegle and
D. P. Goldberg, J. Am. Chem. Soc., 2013, 135, 10590;
(b) S. Sahu, M. G. Quesne, C. G. Davies, M. Dürr,
I. Ivanovíc-Burmazovíc, M. A. Siegle, G. N. L. Jameson,
S. P. de Visser and D. P. Goldberg, J. Am. Chem. Soc., 2014,
136, 13542.
6 (a) W. H. Harman and C. J. Chang, J. Am. Chem. Soc., 2007,
129, 15128; (b) J. P. Bigi, W. H. Harman, B. Lassalle-Kaiser,
D. M. Robles, T. A. Stich, J. Yano, R. D. Britt and
C. J. Chang, J. Am. Chem. Soc., 2012, 134, 1536.
7 (a) S. Taktak, M. Flook, B. M. Foxman, L. Que Jr. and
E. V. Rybak-Akimova, Chem. Commun., 2005, 5301;
(b) N. Y. Oh, M. S. Seo, M. H. Lim, M. B. Consugar,
M. J. Oark, J.-U. Rohde, J. Han, K. M. Kim, J. Kim, L. Que
Jr. and W. Nam, Chem. Commun., 2005, 5644;
(c) O. V. Makhlynets, P. Das, S. Taktak, M. Flook, R. Mas-
Ballesté, E. V. Rybak-Akimova and L. Que Jr., Chem. – Eur.
J., 2009, 15, 13171; (d) O. V. Makhlynets and E. V. Rybak-
Akimova, Chem. – Eur. J., 2010, 16, 13995.
1
7a,20
peroxo-iron(III) complexes.
Thus, the diiron(IV)-oxo species
derived from 2-H seems not to give rise to acetone oxidation
via the formation of diiron-HPP species (step e), although the
formation of diiron-HPP species derived from the diiron(IV)-
oxo species may not be ruled out. Decay of diiron-HPP species
is independent of the electron-donating ability of the substitu-
ent (R-) of R-L to give acetic acid and the yield of acetic acid is
expected to be nearly constant in each ligand system (step d),
which is consistent with the observed yield of acetic acid
(
∼40%).
In summary, we have succeeded in intramolecular arene
hydroxylation and intermolecular acetone oxidation initiated
by the (μ-1,2-peroxo)diiron(III) complexes (2-R) with the di-
nucleating ligands (R-L) for the first time. The former reaction
2
mimics the function of ToMO and involves the diiron(IV)-oxo
species as the electrophilic active oxidant capable of exchanging
with exogenous water, whereas the latter one is closely relevant
to a nucleophilic attack of peroxo species to the CvO group pro-
8 (a) V. Balland, D. Mathieu, Y. M. N. Pons, J. F. Bartoli,
F. Banse, P. Battioni, J. J. Girerd and D. Mansuy, J. Mol.
Catal. A: Chem., 2004, 215, 81; (b) A. Thibon, J.-F. Bartoli,
R. Guillot, J. Sainton, M. Martinho, D. Mansuy and
F. Banse, J. Mol. Catal. A: Chem., 2008, 287, 115;
(c) A. Thibon, V. Jollet, C. Ribal, K. Sénéchal-David,
L. Billon, A. B. Sorokin and F. Banse, Chem. – Eur. J., 2012,
18, 2715.
17a,21
posed for aldehyde deformylating oxygenase (ADO).
The
observed oxidation reactions initiated by 2-R provide a chemical
insight into the nature of (μ-1,2-peroxo)diiron(III) species for oxi-
dation reactivity and O–O bond activation, which are found for
dioxygen-activating non-heme diiron proteins, although further
comprehensive functional model studies are needed.
9 S. P. de Visser, K. Oh, A.-R. Han and W. Nam, Inorg. Chem.,
2007, 46, 4632.
This work was supported by Grants-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, 10 (a) S. Ménage, J.-B. Galey, J. Dumats, G. Hussler, M. Seité,
Science and Technology, Japan and Kanazawa University SAKI-
GAKE Project.
I. G. Luneau, G. Chottard and M. Fontecave, J. Am. Chem.
Soc., 1998, 120, 13370; (b) H. Furutachi, M. Murayama,
A. Shiohara, S. Yamazaki, S. Fujinami, A. Uehara,
M. Suzuki, S. Ogo, Y. Watanabe and Y. Maeda, Chem.
Commun., 2003, 1900; (c) F. Avenier, L. Dubois and
J.-M. Latour, New J. Chem., 2004, 28, 782; (d) M. Yamashita,
H. Furutachi, T. Tosha, S. Fujinami, W. Saito, Y. Maeda,
K. Takahashi, K. Tanaka, T. Kitagawa and M. Suzuki, J. Am.
Chem. Soc., 2007, 129, 2.
Notes and references
1
(a) P. F. Fitzpatrick, Biochemistry, 2003, 42, 14083;
b) M. Costas, M. P. Mehn, M. P. Jensen and L. Que Jr.,
Chem. Rev., 2004, 104, 939; (c) A. R. McDonald and L. Que
(
Jr., Coord. Chem. Rev., 2013, 257, 414; (d) M. Puri and 11 T. Matsumoto, H. Furutachi, M. Kobino, M. Tomii,
L. Que Jr., Acc. Chem. Res., 2015, 48, 2443.
(a) M. H. Sazinsky and S. J. Lippard, Acc. Chem. Res., 2006,
S. Nagatomo, T. Tosha, T. Osako, S. Fujinami, S. Itoh,
T. Kitagawa and M. Suzuki, J. Am. Chem. Soc., 2006, 128,
3874.
2
3
9, 558; (b) L. J. Murray, S. G. Naik, D. O. Ortillo, R. García-
Serres, J. K. Lee, B. H. Huynh and S. J. Lippard, J. Am. 12 K. Honda, J. Cho, T. Matsumoto, J. Roh, H. Furutachi,
Chem. Soc., 2007, 129, 14500; (c) L. J. Bailey and B. G. Fox,
Biochemistry, 2009, 48, 8932.
T. Tosha, M. Kubo, S. Fujinami, T. Ogura, T. Kitagawa and
M. Suzuki, Angew. Chem., Int. Ed., 2009, 48, 3304.
3
4
(a) S. J. Lange, H. Miyake and L. Que Jr., J. Am. Chem. Soc., 13 (a) L. Que Jr., J. Chem. Soc., Dalton Trans., 1997, 3933;
1
999, 121, 6330; (b) M. P. Jensene, S. J. Lange, M. P. Mehn,
E. L. Que and L. Que Jr., J. Am. Chem. Soc., 2003, 125,
113.
(b) M. Suzuki, H. Furutachi and H. Okawa, Coord. Chem.
Rev., 2000, 200–202, 105; (c) E. Y. Tshuva and S. J. Lippard,
Chem. Rev., 2004, 104, 987.
2
(a) E. L. Hegg, R. Y. N. Ho and L. Que Jr., J. Am. Chem. Soc., 14 (a) Y. H. Dong, Y. Zhang, L. J. Shu, E. C. Wilkinson, L. Que
1
999, 121, 1972; (b) M. P. Mehn, K. Fujisawa, E. L. Hegg
Jr., K. Kauffmann and E. Münck, J. Am. Chem. Soc., 1997,
119, 12683; (b) X. Zhang, H. Furutachi, S. Fujinami,
and L. Que Jr., J. Am. Chem. Soc., 2003, 125, 7828;
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015