5
670 Inorganic Chemistry, Vol. 49, No. 12, 2010
Scaffidi-Domianello et al.
3
5,36
recognized by the high-mobility group proteins HMG1,
recognizing specifically 1,2-intrastrand cross-links and
shielding them from repair. Moreover, the higher reactivity
of transplatin compared to that of cisplatin may favor its
deactivation, resulting in the lack of anticancer activity.
In the past few years, some exceptions from the classic rules
have been reported. Several classes of trans complexes
exhibiting higher cytotoxicity than or at least equal to that
groups,
and (vii) platinum(II) complexes with acetimine
3
7
ligands. Interestingly, most of the listed complexes are
similarly or even more cytotoxic than cisplatin and all of
them proved to be non-cross-resistant to cisplatin in cellular
models of acquired cisplatin resistance. Furthermore, for the
first four of the above-mentioned classes, the antitumor
activity was confirmed in an in vivo model. Moreover, some
of the complexes even displayed a lack of cross-resistance to
13-16
20,29
of the corresponding cis isomer are (i) platinum(II)
/
cisplatin in vivo.
17
platinum(IV) complexes with pyridine-like ligands, (ii) plati-
Very recently, a new intriguing class of trans-configured
platinum compounds exhibiting antitumor activity was re-
ported. Almost simultaneously two independent groups of
researcher published the fascinating results of in vitro bio-
logical investigations for two acetoxime-containing plati-
num(II) complexes, namely, trans-[PtCl
CH(CH
According to these investigations, the former complex, but
not its cis isomer, causes cell death by apoptosis, even though
the overall cytotoxicity was found to be higher for the cis-
configured complex. Differently, trans-[PtCl (Me CdNOH) ]
18-21
num(II) complexes with iminoether ligands,
(iii) plati-
num(II) complexes with nonplanar heterocyclic ligands, such
2
2-25
26-28
as piperidine or piperazine,
(iv) platinum(II)
/
29,30
platinum(IV) complexes with aliphatic amines, (v) plati-
num(II) carboxylato complexes with planar amines,
azole and isopropylamine, azole and ammine ligands, (vi)
platinum(II) complexes containing various phosphoric
31,32
(Me
)] as well as trans-[PtCl (Me CdNOH) ].
2 2
CdNOH)(NH -
2
2 2
33
34
38
39
)
2
3
2
(
13) Farrell, N.; Ha, T. T. B.; Souchard, J. P.; Wimmer, F. L.; Cros, S.;
Johnson, N. P. J. Med. Chem. 1989, 32, 2240–2241.
14) Farrell, N.; Kelland, L. R.; Roberts, J. D.; Van Beusichem, M.
2
2
2
(
was found to be 16 times more cytotoxic than its cis isomer
and as cytotoxic as cisplatin in cisplatin-sensitive ovarian
carcinoma cells (CH1). Moreover, it appeared to be 15 times
more cytotoxic than both cisplatin and its cis isomer
in intrinsically cisplatin-resistant colon carcinoma cells
Cancer Res. 1992, 52, 5065–5072.
(
15) Van Beusichem, M.; Farrell, N. Inorg. Chem. 1992, 31, 634–639.
(
16) Farrell, N.; Povirk, L. F.; Dange, Y.; DeMasters, G.; Gupta, M. S.;
Kohlhagen, G.; Khan, Q. A.; Pommier, Y.; Gewirtz, D. A. Biochem.
Pharmacol. 2004, 68, 857–866.
(
17) Martinez, A.; Lorenzo, J.; Prieto, M. J.; de Llorens, R.; Font-Bardia,
M.; Solans, X.; Aviles, F. X.; Moreno, V. ChemBioChem 2005, 6, 2068–2077.
18) Coluccia, M.; Nassi, A.; Loseto, F.; Boccarelli, A.; Mariggio, M. A.;
Giordano, D.; Intini, F. P.; Caputo, P.; Natile, G. J. Med. Chem. 1993, 36,
10–512.
19) Zaludova, R.; Zokovska, A.; Kasparkova, J.; Balcarova, Z.; Vrana,
O.; Coluccia, M.; Natile, G.; Brabec, V. Mol. Pharmacol. 1997, 52, 354–361.
20) Coluccia, M.; Nassi, A.; Boccarelli, A.; Giordano, D.; Cardellicchio,
N.; Locker, D.; Leng, M.; Sivo, M.; Intini, F. P.; Natile, G. J. Inorg. Biochem.
999, 77, 31–35.
21) Casini, A.; Gabbiani, C.; Mastrobuoni, G.; Pellicani, R. Z.; Intini, F.
(SW480).
(
In this context, it is worthwhile mentioning that oximes are
attractive ligands in view of their potential to act as donors or
5
(
acceptors for hydrogen bonds or even serve as weak acids
40
(
pK 3-8), which could play an important role in the
a
(
41
binding of platinum compounds to DNA. In addition,
the biological relevance of oximes appreciably favors their
use as ligands for potential metal-based drugs, which may
yield increased cytotoxicity by virtue of synergistic effects
between the platinum center and the coordinated oxime. For
instance, it was reported that oxime complexes and other
species bearing the oxime functional group caused biological
effects such as endothelium-independent relaxation in blood
1
(
P.; Arnesano, F.; Natile, G.; Moneti, G.; Francese, S.; Messori, L. Biochem-
istry 2007, 46, 12220–12230.
(
22) Najajreh, Y.; Perez, J. M.; Navarro-Ranninger, C.; Gibson, D.
J. Med. Chem. 2002, 45, 5189–5195.
23) Nguewa, P. A.; Fuertes, M. A.; Iborra, S.; Najajreh, Y.; Gibson, D.;
Martinez, E.; Alonso, C.; Perez, J. M. J. Inorg. Biochem. 2005, 99, 727–736.
24) Najajreh, Y.; Prilutski, D.; Ardeli-Tzaraf, Y.; Perez, J. M.; Khazanov,
(
(
42
E.; Barenholz, Y.; Kasparkova, J.; Brabec, V.; Gibson, D. Angew. Chem., Int.
Ed. 2005, 44, 2885–2887.
vessels, an increase in the targeting of specific nuclear bases
4
3
44
of DNA, and oxidative DNA cleavage.
(
25) Najajreh, Y.; Khazanov, E.; Jawbry, S.; Ardeli-Tzaraf, Y.; Perez, J.
M.; Kasparkova, J.; Brabec, V.; Barenholz, Y.; Gibson, D. J. Med. Chem.
006, 49, 4665–4673.
26) Montero, E. I.; Diaz, S.; Gonzalez-Vadillo, A. M.; Perez, J. M.;
Alonso, C.; Navarro-Ranninger, C. J. Med. Chem. 1999, 42, 4264–4268.
27) Montero, E. I.; Perez, J. M.; Schwartz, A.; Fuertes, M. A.; Malinge,
J. M.; Alonso, C.; Leng, M.; Navarro-Ranninger, C. ChemBioChem 2002, 3,
1–67.
28) Prokop, R.; Kasparkova, J.; Novakova, O.; Marini, V.; Pizarro, A.
M.; Navarro-Ranninger, C.; Brabec, V. Biochem. Pharmacol. 2004, 67,
097–1109.
29) Kelland, L. R.; Barnard, C. F. J.; Evans, I. G.; Murrer, B. A.;
On the basis of the promising results obtained with
2
trans-[PtCl (Me CdNOH) ] and with the aim to estab-
2
2
2
(
lish structure-activity relationships, we report on a series
of novel dihalidobis(oxime)platinum(II) complexes, i.e.,
(
trans-[PtX (R CdNOH) ] (X = Cl, Br, I; R = Me, Et, n-
2
2
2
6
Pr, i-Pr), of which at least two exhibit higher cytotoxicity
than the corresponding cis species in both CH1 and SW480
cells. Moreover, the corresponding cis/trans couples of
(
1
(
Theobald, B. R. C.; Wyer, S. B.; Goddard, P. M.; Jones, M.; Valenti, M.;
Bryant, A.; Rogers, P. M.; Harrap, K. R. J. Med. Chem. 1995, 38, 3016–3024.
(37) Boccarelli, A.; Intini, F. P.; Sasanelli, R.; Sivo, M. F.; Coluccia, M.;
Natile, G. J. Med. Chem. 2006, 49, 829–837.
(
30) Perez, J. M.; Kelland, L. R.; Montero, E. I.; Boxall, F. E.;
Fuertes, M. A.; Alonso, C.; Navarro-Ranninger, C. Mol. Pharmacol.
003, 63, 933–944.
31) Ma, E. S. F.; Bates, W. D.; Edmunds, A.; Kelland, L. R.; Fojo, T.;
Farrell, N. J. Med. Chem. 2005, 48, 5651–5654.
32) Quiroga, A. G.; Perez, J. M.; Alonso, C.; Navarro-Ranninger, C.;
Farrell, N. J. Med. Chem. 2006, 49, 224–231.
33) van Zutphen, S.; Pantoja, E.; Soriano, R.; Soro, C.; Tooke, D. M.;
Spek, A. L.; den Dulk, H.; Brouwer, J.; Reedijk, J. Dalton Trans. 2006, 1020–
023.
34) Bulluss, G. H.; Knott, K. M.; Ma, E. S. F.; Aris, S. M.; Alvarado, E.;
Farrell, N. Inorg. Chem. 2006, 45, 5733–5735.
35) Ramos-Lima, F. J.; Quiroga, A. G.; Perez, J. M.; Font-Bardia, M.;
Solans, X.; Navarro-Ranninger, C. Eur. J. Inorg. Chem. 2003, 1591–1598.
36) Kalinowska, U.; Matlawska, K.; Checinska, L.; Domagala, M.;
Kontek, R.; Osiecka, R.; Ochocki, J. J. Inorg. Biochem. 2005, 99, 2024–2031.
(38) Quiroga, A. G.; Cubo, L.; de Blas, E.; Aller, P.; Navarro-Ranninger,
C. J. Inorg. Biochem. 2007, 101, 104–110.
(39) Zorbas-Seifried, S.; Jakupec, M. A.; Kukushkin, N. V.; Groessl, M.;
Hartinger, Ch. G.; Semenova, O.; Zorbas, H.; Kukushkin, V. Yu.; Keppler,
B. K. Mol. Pharmacol. 2007, 71, 357–365.
(40) Kukushkin, V. Yu.; Tudela, D.; Pombeiro, A. J. L. Coord. Chem.
Rev. 1996, 156, 333–362.
(41) Reedijk, J. Inorg. Chim. Acta 1992, 198-200, 873–881.
(42) Vetrovsky, P.; Boucher, J.-L.; Schott, C.; Beranova, P.; Chalupsky,
K.; Callizot, N.; Muller, B.; Entlicher, G.; Mansuy, D.; Stoclet, J.-C.
J. Pharm. Exp. Ther. 2002, 303, 823–830.
2
(
(
(
1
(
(
(43) Hambley, T. W.; Ling, E. C. H.; O’Mara, S.; McKeage, M. J.;
Russell, P. J. J. Biol. Inorg. Chem. 2000, 5, 675–681.
(44) Saglam, N.; Colak, A.; Serbest, K.; Duelger, S.; Guener, S.;
Karaboecek, S.; Belduez, A. O. BioMetals 2002, 15, 357–365.
(