Journal of the American Chemical Society
Page 10 of 12
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
27.
Haber, A.; Gross, Z., Catalytic antioxidant therapy by
manganese(III) schiff-base complexes. Inorg. Chem. 1997, 36, 4968-
metallodrugs: Lessons from metallocorroles. Chem. Commun. 2015,
4982.
45.
5
2
1, 5812-5827.
8. Naruta, Y.; Maruyama, K., High oxygen-evolving activity of
Coleman, W. M.; Boggess, R. K.; Hughes, J. W.; Taylor, L.
T., Electrochemical studies of manganese (II) complexes containing
pentadentate ligands with O N , O N , and O SN donor sets. Inorg.
2 3 3 2 2 2
Chem. 1981, 20, 700-706.
rigidly linked manganese (III) porphyrin dimers. A functional model
of manganese catalase. J. Am. Chem. Soc. 1991, 113, 3595-3596.
2
9.
cooperativity in the disproportionation of H
by a tetranuclear manganese complex. Angew. Chem. Int. Ed. 2000,
Dubé, C. E.; Wright, D. W.; Armstrong, W. H., Evidence for
46.
Bonadies, J. A.; Maroney, M. J.; Pecoraro, V. L.,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
O
2
efficiently catalyzed
Structurally diverse manganese (III) schiff base complexes: Solution
speciation via paramagnetic proton NMR spectroscopy and
electrochemistry. Inorg. Chem. 1989, 28, 2044-2051.
1
3
12, 2253-2256.
0. Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L., Structural,
47.
Beer, P. D.; Cheetham, A. G.; Drew, M. G.; Fox, O. D.;
spectroscopic, and reactivity models for the manganese catalases.
Chem. Rev. 2004, 104, 903-938.
Hayes, E. J.; Rolls, T. D., Pyrrole-based metallo-macrocycles and
cryptands. Dalton Trans 2003, 4, 603-611.
3
1.
Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B. H.; Tani, F.;
48.
Guillet, G. L.; Sloane, F. T.; Dumont, M. F.; Abboud, K. A.;
tris(2-
V
Naruta, Y., Characterization of a dinuclear Mn =O complex and its
efficient evolution of O
Ed. 2004, 43, 98-100.
Murray, L. J., Synthesis and characterization of
a
2
in the presence of water. Angew. Chem. Int.
hydroxyphenyl)methane-based cryptand and its triiron(III) complex.
Dalton Trans 2012, 41, 7866–7869.
3
2.
the manganese catalases. Coord. Chem. Rev. 2012, 256, 1229-1245.
3. Akine, S.; Piao, S.; Miyashita, M.; Nabeshima, T., Cage-like
Signorella, S.; Hureau, C., Bioinspired functional mimics of
49.
Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.;
3
Caravan, P., Chemistry of mri contrast agents: Current challenges and
new frontiers. Chem. Rev. 2018, 119, 957-1057.
tris(salen)-type metallocryptand for cooperative guest recognition.
Tetrahedron Lett. 2013, 54, 6541-6544.
34.
encapsulation of a guanidinium ion in a helical trinickel(II)
metallocryptand for efficient regulation of the helix inversion rate.
Inorg. Chem. Front. 2014, 1, 53-57.
50.
Sedgwick, A. C.; Brewster, J. T.; Harvey, P.; Iovan, D. A.;
Akine, S.; Miyashita, M.; Piao, S.; Nabeshima, T., Perfect
Smith, G.; He, X.-P.; Tian, H.; Sessler, J. L.; James, T. D., Metal-based
imaging agents: Progress towards interrogating neurodegenerative
disease. Chem. Soc. Rev. 2020. DOI: 10.1039/C8CS00986D
51.
Mark, G.; Tauber, A.; Laupert, R.; Schuchmann, H. P.;
3
5.
Akine, S.; Miyashita, M.; Nabeshima, T., A metallo-
Schulz, D.; Mues, A.; Sonntag, C. v., Oh-radical formation by
ultrasound in aqueous solution-part II:Terephthalate and fricke
dosimetry and the influence ofvarious conditions on the sonolytic
yield. Ultrason. Sonochem. 1998, 5, 41-52.
molecular cage that can close the apertures with coordination bonds. J.
Am. Chem. Soc. 2017, 139, 4631-4634.
36.
T., Bpytrisalen/bpytrisaloph: A triangular platform that spatially
arranges different multiple labile coordination sites. Inorg. Chem.
Nakamura, T.; Kawashima, Y.; Nishibori, E.; Nabeshima,
52.
Campbell, K. A.; Lashley, M. R.; Wyatt, J. K.; Nantz, M. H.;
Britt, R. D., Dual-mode epr study of Mn (III) salen and the Mn (III)
salen-catalyzed epoxidation of cis-β-methylstyrene. J. Am. Chem. Soc.
2001, 123, 5710-5719.
2
3
019, 58, 7863-7872.
7. Elbert, S. M.; Zhang, W.-S.; Vaynzof, Y.; Oberhof, N.;
Bernhardt, M.; Pernpointner, M.; Rominger, F.; Schröder, R. R.;
Mastalerz, M., Metal-assisted salphen organic frameworks (masofs)
with trinuclear metal units for synergic gas sorption. Chem. Mater.
2019, 31, 6210-6223.
53.
Kurahashi, T.; Fujii, H., One-electron oxidation of
electronically diverse manganese (III) and nickel (II) salen complexes:
Transition from localized to delocalized mixed-valence ligand
radicals. J. Am. Chem. Soc. 2011, 133, 8307-8316.
38.
Chen, J. J.; Jing, J.; Chang, H.; Rong, Y.; Hai, Y.; Tang, J.;
54.
Kurahashi, T.; Hada, M.; Fujii, H., Critical role of external
Zhang, J. L.; Xu, P., A sensitive and quantitative autolysosome probe
for detecting autophagic activity in live and prestained fixed cells.
Autophagy 2013, 9, 894-904.
axial ligands in chirality amplification of trans-cyclohexane-1,2-
diamine in salen complexes. J. Am. Chem. Soc. 2009, 131, 12394-
12405.
3
9.
Tang, J.; Cai, Y. B.; Jing, J.; Zhang, J. L., Unravelling the
55.
Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.;
correlation between metal induced aggregation and cellular
uptake/subcellular localization of znsalen: An overlooked rule for
design of luminescent metal probes. Chem. Sci. 2015, 6, 2389-2397.
Yano, J.; Hendrich, M. P.; Borovik, A. S., High-spin Mn-oxo
complexes and their relevance to the oxygen-evolving complex within
photosystem II. Proc Natl Acad Sci U S A 2015, 112, 5319-5324.
4
0.
Tang, J.; Yin, H. Y.; Zhang, J. L., A luminescent aluminium
56.
Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M. P.;
IV
salen complex allows for monitoring dynamic vesicle trafficking from
the golgi apparatus to lysosomes in living cells. Chem. Sci. 2018, 9,
Borovik, A. S., Preparation and properties of a monomeric Mn -oxo
complex. J. Am. Chem. Soc. 2006, 128, 8728-8729.
1
4
931-1939.
1. Lai, J.; Ke, X.-S.; Tang, J.; Zhang, J.-L., Tris(znsalen)
57.
Kurahashi, T.; Kikuchi, A.; Tosha, T.; Shiro, Y.; Kitagawa,
T.; Fujii, H., Transient intermediates from Mn(salen) with sterically
IV
cryptand minimizes znsalen aggregation arising from intermolecular
Zn⋯O interaction. Chin. Chem. Lett. 2015, 26, 937-941.
hindered mesityl groups: Interconversion between Mn -phenolate and
III
Mn -phenoxyl tadicals as an origin for unique reactivity. Inorg. Chem.
4
2.
Yin, H.-Y.; Lai, J.; Tang, J.; Shang, Y.; Zhang, J.-L., A
2008, 47, 1674-1686.
cryptand-type aluminum tris(salophen) complex: Synthesis,
characterization, and cell imaging application. Inorganics 2018, 6, 20.
58.
Kurahashi, T.; Kikuchi, A.; Shiro, Y.; Hada, M.; Fujii, H.,
Unique properties and reactivity of high-valent manganese-oxo versus
manganese-hydroxo in the salen platform. Inorg. Chem. 2010, 49,
6664-6672.
4
3.
Yasuda, M.; Yoshioka, S.; Yamasaki, S.; Somyo, T.; Chiba,
K.; Baba, A., Cage-shaped borate esters with enhanced lewis acidity
and catalytic activity. Org. Lett. 2006, 8, 761-764.
44.
R.; Weintraub, S. T.; Horwitz, C. P., Multinuclear paramagnetic NMR
spectra and solid state x-ray crystallographic characterization of
59.
Maté, M.; Murshudov, G.; Bravo, J.; Melik-Adamyan, V. R.;
Ciringh, Y.; GordonWylie, S. W.; Norman, R. E.; Clark, G.
Loewen, P. C.; Fita, I., Handbook of metalloproteins. Messerschmidt,
A.; Huber, R.; Poulos, T.; Wieghardt, K., Eds. John Wiley: New York,
2001.
ACS Paragon Plus Environment