RSC Advances
Paper
1.25, 2.5, 5 mmol Lꢃ1 APAP-P1 for 24 h. Then the cells were lysed
in PBS buffer, and the concentration was adjusted to 2 mg mLꢃ1
for biotin–streptavidin pull-down assay just like cell lysate.
Western blotting. Proteomes from pull-down assay were
used for Western blot experiment. 10 mL samples were sub-
jected to SDS-PAGE electrophoresis and transferred to NC
membranes. The membranes were blocked with 5% (w/v)
non-fat dried milk for 2 h and incubated with various
2 G. A. Kullak-Ublick, R. J. Andrade, M. Merz, P. End,
A. Benesic, A. L. Gerbes and G. P. Aithal, Gut, 2017, 66,
1154–1164.
3 D. Bissell, Hepatology, 2001, 33, 1009–1013.
4 W. M. Lee, J. Hepatol., 2017, 67, 1324–1331.
5 D. Bartlett, J. Emerg. Nurs., 2004, 3, 281–283.
6 M. R. McGill and H. Jaeschke, Pharm. Res., 2013, 30, 2174–
2187.
7 M. L. Bajt, Toxicol. Sci., 2004, 80, 343–349.
8 J. A. Hinson, A. B. Reid, S. S. McCullough and L. P. James,
Drug Metab. Rev., 2004, 36, 805–822.
9 H. Jaeschke, C. D. Williams, A. Ramachandran and
M. L. Bajt, Liver Int., 2012, 32, 8–20.
specic primary antibodies at
4
ꢁC overnight. The
membranes were subsequently washed with TBST and incu-
bated with the appropriate secondary antibody at room
temperature for 2 h. Following washes with TBST, the protein
bands were visualized using an ECL system (CW Biotech,
Beijing, China) and imaged using a Bio-Rad imaging system 10 K. Du, Y. Xie, M. R. McGill and H. Jaeschke, Expert Opin. Drug
(Bio-Rad, Hercules, CA, USA). Metab. Toxicol., 2015, 11, 1769–1779.
Statistics. All data are expressed as the means ꢀ SD of at least 11 J. A. Hinson, D. W. Robert and L. P. James, Handb. Exp.
three independent experiments. Signicant differences between Pharmacol., 2010, 196, 369–405.
the groups were determined by ANOVA. Data analyses were 12 J. R. Prigge, S. Eriksson, S. V. Iverson, T. A. Meade,
´
performed using GraphPad Prism 5 (GraphPad Prism Soware,
M. R. Capecchi, E. S. J. Arner and E. E. Schmidt, Free
2012, La Jolla, CA, USA).
Radical Biol. Med., 2012, 52, 803–810.
13 S. V. Iverson, S. Eriksson, J. Xu, J. R. Prigge, E. A. Talago,
´
T. A. Meade, E. S. Meade, M. R. Capecchi, E. S. J. Arner
Conclusions
and E. E. Schmidt, Free Radical Biol. Med., 2013, 63, 369–380.
14 Y. Jan, D. E. Heck, A. Dragomir, C. R. Gardner, D. L. Laskin
and J. D. Laskin, Chem. Res. Toxicol., 2014, 27, 882–894.
15 M. Saitoh, H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume,
Y. Sawada, M. Kawabata, K. Miyazono and H. Ichijo, EMBO
J., 1998, 17, 2596–2606.
16 J. Kwon, E. Shin, J. Lee, S. Kim, S. Kim, Y. Jee, Y. Kim,
H. Park, K. Min and H. Park, Allergy, Asthma Immunol. Res.,
2012, 4, 132.
17 B. Fu, W. Meng, X. Zeng, H. Zhao, W. Liu and T. Zhang,
BioMed Res. Int., 2017, 2017, 1–8.
18 A. Michaut, D. Le Guillou, C. Moreau, S. Bucher,
M. R. McGill, S. Martinais, T. Gicquel, I. Morel, M. Robin,
H. Jaeschke and B. Fromenty, Toxicol. Appl. Pharmacol.,
2016, 292, 40–55.
In conclusion, we designed and synthesized one new powerful
probe APAP-P1, introducing the PEG-azide probe linker into the
acetyl group of acetaminophen. This probe maintained hepato-
toxicity in HepaRG cells by MTT assay, and demonstrated that the
PEG-azide probe linker does not change APAP hepatotoxicity.
Metabolite of APAP-P1 by HepaRG cells showed this probe still can
be metabolised to hepatotoxic intermediate. Results above proved
APAP-P1 worked well in HepaRG cells, so we can use this probe for
target shing and identication. By CC-ABPP pull-down assays in
both cell lysate and cells, we identied their protein proles. There
was some difference under the two conditions. This change is due
to the metabolism of APAP-P1. This is similar to the process of
APAP in vivo. TrxR1 has been proved NAPQI hepatotoxicity target in
previous research, nally, we also identied that APAP-P1 can
target TrxR1 by pull-down protein Western blot assay and thus
APAP-P1 can be used for further research in vivo.
19 M. R. McGill, H. Yan, A. Ramachandran, G. J. Murray,
D. E. Rollins and H. Jaeschke, Hepatology, 2011, 53, 974–982.
20 Y. Xie, M. R. McGill, S. F. Cook, M. R. Sharpe,
R. D. Wineeld, D. G. Wilkins, D. E. Rollins and
H. Jaeschke, Xenobiotica, 2015, 45, 921–929.
Conflicts of interest
21 M. H. Wright and S. A. Sieber, Nat. Prod. Rep., 2016, 5, 681–
708.
The authors conrm that there are no conicts of interest.
22 J. Krysiak and R. Breinbauer, Top. Curr. Chem., 2012, 43–84.
23 A. E. Speers and B. F. Cravatt, Curr. Protoc. Chem. Biol., 2009,
1, 29–41.
24 A. B. Berger, P. M. Vitorino and M. Bogyo, Am. J.
PharmacoGenomics, 2004, 4, 371–381.
25 A. D. Patterson, B. A. Carlson, F. Li, J. A. Bonzo, M. Yoo,
K. W. Krausz, M. Conrad, C. Chen, F. J. Gonzalez and
D. L. Hateld, Chem. Res. Toxicol., 2013, 26, 1088–1096.
26 L. Li, X. Chen, D. Li and D. Zhong, Drug Metab. Dispos., 2011,
39, 472–483.
Acknowledgements
This work was supported by the National Science and Technology
Major Project (Grant No. 2015ZX09501004-001-003), the Special
Research Project for TCM (Grant No. 201507004), and the CAMS
Innovation Fund for Medical Science (CIFMS) (Grant No. 2016-I2M-
1-012), Beijing Natural Science Foundation (Grant No. 7192129).
Notes and references
27 S. Wang, M. Wang, M. Wang, Y. Tian, X. Sun, G. Sun and
X. Sun, Toxins, 2018, 10, 154.
1 R. Chan and L. Z. Benet, Chem. Res. Toxicol., 2016, 30, 1017–
1029.
15228 | RSC Adv., 2019, 9, 15224–15228
This journal is © The Royal Society of Chemistry 2019