S. Goswami et al. / Tetrahedron 64 (2008) 6358–6363
6363
by using 8% ethyl acetate in petroleum ether (60 ꢀC–80 ꢀC) to yield
a brownish material (semi-solid, 710 mg, yield 70%).
13C NMR (CDCl3, 125 MHz):
d
171.5, 157.5, 156.6, 152.1, 150.9,
139.4, 136.1, 129.5, 124.9, 118.0, 116.5, 112.9, 110.9, 106.8, 72.6, 66.8,
64.9, 34.7, 25.3.
1H NMR (CDCl3, 500 MHz):
d
8.15 (t, 2H, J¼9.1 Hz), 8.00 (br s,
2H), 7.70 (dd, 2H, J¼7.8, 7.9 Hz), 7.16 (dd, 2H, J¼7.4, 7.4 Hz), 6.31 (s,
MS (FAB) (m/z, %): 659.1 (MþNaþ, 65), 637.2 (MþHþ, 100), 528.2
(35).
2H), 4.62 (s, 4H), 4.55 (s, 4H), 1.25 (s, 18H).
13C NMR (CDCl3, 100 MHz):
d
184.6, 155.9, 151.7, 151.3, 139.2,
HRMS (ESþ) calcd for C36H36N4O7Na (MþNaþ): 659.2482.
117.4, 113.1, 110.4, 71.9, 64.7, 38.4, 27.2.
MS (ESI) (m/z, %): 531.2 (MþNaþ, 80), 421.2 (100).
HRMS (ESþ) Calcd for C28H36N4O5Na (MþNaþ): 531.2584.
Found: 531.2587.
Found: 659.2482.
FTIR (KBr, nmax): 2923, 2360, 1732, 1698, 1634, 1540, 1456,
1210 cmꢂ1
.
FTIR (KBr, nmax): 2923, 2852, 2360, 1732, 1716, 1698, 1456 cmꢂ1
.
Acknowledgements
4.8. 6-{[(5-{[(6-Amino-2-pyridyl)methoxy]methyl}-2-
furyl)methoxy]methyl}-2-pyridinamine (6)
Authors thank DST [SR/S1/OC-13/2005] (Government of India)
for financial support. S.D. thanks CSIR (Government of India) for
providing Research Associateship [8/3(41)(48) EMR-1].
Compound 5 (1.0 g, 1.96 mol) was dissolved in ethanol (5.0 mL)
containing aqueous 4 M KOH (5.0 mL). The mixture was refluxed
for 6 h. The solvent was removed and water was added to the
residue and extracted with ethyl acetate. The organic layer was
separated and dried over anhydrous sodium sulfate and evaporated
to yield a brownish solid material (640 mg, yield 95%, mp 118 ꢀC).
Supplementary data
NMR (1H and 13C) spectra, MS-spectra, UV-vis and fluorescence
titration spectra of receptor with dicarboxylic acids, titration curves
and the association constants calculation curves (both UV-vis and
fluorescence method), and energy minimised structures are also
available. Supplementary data associated with this article can be
1H NMR (CDCl3, 500 MHz):
d
7.41 (t, 2H, J¼7.7 Hz), 6.77 (d, 2H,
J¼7.3 Hz), 6.38 (d, 2H, J¼8.1 Hz), 6.30 (s, 2H), 4.54 (s, 4H), 4.48 (s,
4H) (amine proton not observable).
13C NMR (CDCl3, 100 MHz):
110.3, 107.5, 72.5, 64.6.
d 158.0, 156.1, 151.8, 138.4, 111.5,
LC–MS (m/z, %): 341.2 (MþHþ, 17), 299.4 (11), 217.3 (100), 189.1
(39).
References and notes
HRMS (ESþ) Calcd for C18H20N4O3Na (MþNaþ): 363.1433.
1. Comprehensive Supramolecular Chemistry; Atood, J. L., Davies, J. E. D., MacNicol,
D. D., Vogetle, F., Eds.; Elsevier: Exeter, 1996 and references cited therein.
2. (a) Diederich, F. Cyclophanes; The Royal Society of Chemistry: Cambridge, UK,
1991; (b) Rebek, J., Jr. Acc. Chem. Res. 1990, 23, 399–404.
Found: 363.1436.
FTIR (KBr, nmax): 2963, 1619, 1466, 1261, 1094, 1020, 799 cmꢂ1
.
3. Lehn, J.-M. Supramolecular Chemistry Concepts and Perspectives; VCH: Wein-
heim, 1995.
4.9. Macrocyclic receptor 1
4. Konig, B.; Moller, O.; Bubenitschck, P. J. Org. Chem. 1995, 60, 4291–4293.
5. (a) Moore, G.; Papamicae¨l, C.; Levacher, V.; Bourguignon, J.; Dupas, G.
Tetrahedron 2004, 60, 4197–4204; (b) Wu, J.; He, Y.; Zeng, Z.; Wei, L.; Meng, L.;
Yang, T. Tetrahedron 2004, 60, 4309–4314.
6. (a) Wong, W.-L.; Huang, K.-H.; Teng, P.-F.; Lee, C.-S.; Kwong, H.-L. Chem.
Commun. 2004, 384–385; (b) Sasaki, S.; Hashizume, A.; Citterio, D.; Fujii, E.;
Suzuki, K. Tetrahedron Lett. 2002, 43, 7243–7245.
7. (a) Chang, S.-K.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 1318–1319; (b)
Chang, S. K.; Engen, D. V.; Fan, E.; Hamilton, A. D. J. Am. Chem. Soc. 1991, 113,
7640–7645.
8. Karle, I. L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997, 119, 2777–2783.
9. (a) Goswami, S. P.; Dey, S. J. Org. Chem. 2006, 71, 7280–7287; (b) Goswami, S. P.;
Dey, S.; Fun, H.-K.; Anjum, S.; Atta-ur-Rahman. Tetrahedron Lett. 2005, 46, 7187–
7191; (c) Goswami, S. P.; Jana, S.; Dey, S.; Razak, I. A.; Fun, H.-K. Supramol. Chem.
2006, 18, 571–576.
10. (a) Schmuck, C. Coord. Chem. Rev. 2006, 250, 3053–3067; (b) Gunnlaugsson, T.;
Davis, A. P.; O’Brien, J. E.; Glynn, M. Org. Lett. 2002, 4, 2449–2452; (c) Ghosh, K.;
Adhikari, S. Tetrahedron Lett. 2006, 47, 3577–3581; (d) Ghosh, K.; Masanta, G.
Tetrahedron Lett. 2006, 47, 2365–2369.
11. (a) Goswami, S. P.; Ghosh, K. Tetrahedron Lett. 1997, 38, 4503–4506; (b)
Goswami, S. P.; Ghosh, K.; Dasgupta, S. J. Org. Chem. 2000, 65, 1907–1914.
12. (a) Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732–
12733; (b) Shorthill, B. J.; Granucci, R. G.; Powell, D. R.; Glass, T. E. J. Org. Chem.
2002, 67, 904–909.
13. Tran, A. H.; Miller, D. A.; Georgbiou, P. E. J. Org. Chem. 2005, 70, 1115–1121.
14. (a) Moye, C. J.; Krzeminski, Z. S. Aust. J. Chem. 1963, 16, 258–269; For other
procedures: (b) Feather, M. S.; Harris, D. W.; Nichols, S. B. J. Org. Chem. 1972, 37,
1606–1608.
15. Energy minimisation was carried out using MMX (PCMODEL Serena Software
1993). Molecular modelling was performed using standard constants and the
dielectric constant was maintained at 1.5.
The acid 7 (58 mg, 0.176 mmol) was taken in a round-bottomed
flask (25.0 mL) and to this dry dichloromethane (10.0 mL) was
added. The system was kept under nitrogen atmosphere. Oxalyl
dichloride (0.10 mL) and one drop of dry DMF were added to the
above solution. It was stirred for 3 h. The solvent was removed to
get the acid dichloride of compound 7 to be used for the next step.
In a two-necked round-bottomed flask fitted with two dropping
funnels, dichloromethane (20.0 mL) was taken and the system was
kept under nitrogen. Diamine 6 (60 mg, 0.176 mmol) was dissolved
in CH2Cl2 (10.0 mL). Then the volume was made up with dry
dichloromethane (30.0 mL) and to this, triethylamine (0.10 mL) was
added and the mixture was taken in a dropping funnel. Acid
dichloride of compound 7 was also dissolved in dry dichloro-
methane (30.0 mL) and taken in another dropping funnel. Both
solutions were added dropwise to the two-necked round-bottomed
flask for a period of 2 h and stirred continuously for 10 h at room
temperature under nitrogen atmosphere. Then the solvent was
removed and fresh CH2Cl2 was added to the reaction mixture.
Washing with saturated sodium bicarbonate solution, the organic
layer was dried over anhydrous sodium sulfate. The solvent was
then evaporated to dryness and the crude mixture was purified by
preparative TLC using 4% methanol in chloroform (off-white solid;
yield 12%, 13.4 mg, mp 142–45 ꢀC).
1H NMR (CDCl3, 300 MHz):
d
8.05 (d, 2H, 2NH, J¼8.2 Hz), 7.60 (t,
16. (a) Connors, K. A. Binding ConstantdThe Measurement of Molecular Complex
Stability; John Wiley & Sons: New York, NY, 1987; (b) Chou, P.-T.; We, G.-R.; Wei,
C.-Y.; Cheng, C.-C.; Chang, C.-P.; Hung, F.-T. J. Phys. Chem. B 2000, 104, 7818–
7829; (c) Liao, J.-H.; Chen, C.-T.; Chou, H.-C.; Cheng, C.-C.; Chou, P.-T.; Fang,
J.-M.; Slanina, Z.; Chow, T. J. Org. Lett. 2002, 4, 3107–3110.
2H, J¼7.9 Hz), 7.48 (4H, d, J¼9.7 Hz), 7.18 (s, 2H), 7.01 (d, 2H,
J¼7.1 Hz), 6.89 (d, 2H, J¼7.3 Hz), 6.16 (s, 2H), 4.39 (s, 4H), 4.36 (s,
4H), 4.06 (t, 4H, J¼5.9 Hz), 2.59–2.55 (m, 4H), 2.21 (t, 4H, J¼6.0 Hz).