Robert J. Perkins et al.
Report
6. Redden, A.; Perkins, R. J.; Moeller, K. D. Oxidative Cyclization
Reactions: Controlling the Course of a Radical Cation-Derived
Reaction with the Use of a Second Nucleophile. Angew. Chem. Int.
Ed. 2013, 52, 12865-12868.
Supporting Information
The supporting information for this article is available on the
spectral data for the new compounds synthesized.
7. (a) For the isolation of Artemisolide see Dim, J. H.; Kim, H. –K.;
Jeon, S. B.; Son, K. –H.; Kim, E. H.; Kang, S. K.; Sung, N. –D.; Kwon,
B. –M. New Sesquiterpene-Monoterpene Lactone Artemisolide,
Isolated from Artemisia Argyi. . Tetrahedron Lett. 2002, 43,
6205-6208. (b) For isolation of the related Arteminolides see
Lee, S. -H.; Kim, H. -K.; Seo, J. -M.; Kang, H. -M.; Kim, J. H.; Son, K.
-H.; Lee, H.; Kwon, B. –M. J. Org. Chem. 2002, 67, 7670-7675.
8. For synthetic studies targeting the related Arteminolides see (a)
Sohn, J. –H. Studies Toward Synthesis of Arteminolides:
Intramolecular [5+2] Oxidopyrylium Ion Cycloaddition Reactions
with Silicon Tether. Bull. Korean Chem. Soc. 2010, 31, 1841-1842.
(b) Sohn, J. –H. [5+2] Oxidopyrylium Ion Cycloaddition Reaction
with Vinylsilane: Construction of Core Structure of Biogenic
Intermediates or Arteminolides. Bull. Korean Chem. Soc. 2009, 30,
2517-2518. (c) Lee, H. –Y.; Sohn, J. –H.; Kim, H. Y. Studies Toward
the Synthesis of Arteminolide: [5+5] Cycloaddition Reaction of
Allenes with Oxidopyrylium Ions. Tetrahedron Lett. 2001, 42,
1695-1698.
Acknowledgement
We thank the National Science Foundation (CHE-1764449)
for their generous support of our work.
References
1. For reviews see: (a) Sperry, J. B.; Wright D. L. The application of
cathodic reductions and anodic oxidations in the synthesis of
complex molecules. Chem. Soc. Rev. 2006, 35, 605-621. (b)
Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern
Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108,
2265-2299. (c) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.;
Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis:
a
promising green methodology in organic chemistry. Green Chem.
2010, 12, 2099-2119. (d) Francke, R.; Little, R. D. Redox catalysis
in organic electrosynthesis: Basic principles and recent
developments. Chem. Soc. Rev. 2014, 43, 2492-2521. (e) Yan, M.;
Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical
Methods Since 2000: On the Verge of a Renaissance. Chem. Rev.
2017, 117, 13230-13319. (f) Nutting, J. E.; Rafiee, M.; Stahl, S. S.
Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl
(PINO), and Related N-Oxyl Species: Electrochemical Properties
and Their Use in Electrocatalytic Reactions Chem. Rev. 2018, 118,
4834−4885. (g) Moeller, K. D. Using Physical Organic Chemistry To
Shape the Course of Electrochemical Reactions Chem. Rev. 2018,
118, 4817–4833. (h) Sauermann, N.; Meyer, T. H.; Ackermann, Y.
L. Electrocatalytic C-H Activation. ACS Catalysis. 2018, 8,
7086−7103. (i) Sauer, G. S.; Lin, S. An Electrocatalytic Approach to
the Radical Difunctionalization of Alkenes. ACS Catalysis. 2018, 8,
5175–5187. (j) Möhle, S,; Zirbes, M.; Rodrigo, E.; Gieshoff, T.;
Wiebe, A.; Waldvogel, S. R. Modern Electrochemiscal Aspects for
the Synthesis of Value-Added Organic Products. Angew. Chem. Int.
Ed. 2018, 57, 6018–6041.
9. (a) Duan, S.; Moeller, K. D. Anodic Cyclization Reactions:
Capitalizing on an Intramolecular Electron Transfer to Trigger the
Synthesis of a Key Tetrahydropyran Building Block. J. Am. Chem.
Soc.
2002, 124, 9368-9369. (b) For an intramolecular
radical cation and
electron-transfer reaction involving
a
a
4-methoxyphenyl ring as an electron donor, see: Chiba, K.; Miura,
T.; Kim, S.; Kitano, Y.; Tada, M. Electrocatalytic Intermolecular
Olefin Cross-Coupling by Anodically Induced Formal [2+2]
Cycloaddition Between Enol Ethers and Alkenes. J. Am. Chem. Soc.
2001, 123, 11314-11315. (c) For an early example involving the
anodic oxidation of an aromatic ring and an amide as an
electron-donor see: Moeller, K. D.; Wang, P. W., Tarazi, S.;
Marzabadi, M. R.; Wong, P. L. Anodic Amide Oxidations in the
Presence of Electron-Rich Phenyl Rings: Evidence for an
Intramolecular Electron-Transfer Mechanism. J. Org. Chem. 1991,
56, 1058-1067.
10. New, D. G.; Tesfai, Z.; Moeller, K. D. Intramolecular Anodic Olefin
Coupling Reactions and the Use of Electron-Rich Aryl Rings. J. Org.
Chem. 1996, 61, 1578-1598.
2. Feng, G.; Smith, J. A.; Moeller, K. D. Anodic Cyclization Reactions
and the Mechanistic Strategies that Enable Optimization. Acc.
Chem. Res. 2017, 50, 2346-2352.
3. For a review of early synthetic efforts please see: Moeller, K. D.
Intramolecular Anodic Olefin Coupling Reactions: Using Radical
Cation Intermediates to Trigger New Umpolung Reactions. Synlett.
(Invited Account) 2009, 1208-1218.
4. (a) Tinao-Wooldridge, L. V.; Moeller, K. D. Hudson, C. M.
Intramolecular Anodic Olefin Coupling Reactions: A new Approach
to the Synthesis of Angularly Fused, Tricyclic Ketones. J. Org.
Chem. 1994, 59, 2381-2389. (b) For similar results with a bridged
bicyclic system see: Reddy, S. H. K.; Chiba, K.; Sun, Y.; Moeller, K.
D. Anodic Oxidations of Electron-Rich Olefins: Radical Cation
Based Approaches to the Synthesis of Bridged Bicyclic Ring
Skeletons Tetrahedron 2001, 57, 5183-5197.
11. (a) Whitehead, C. R.; Sessions, E. H.; Ghiviriga, I.; Wright D. L.
Two-Step Electrochemical Annulation for the Assembly of
Polycyclic Systems. Org. Lett. 2002, 4, 3763-3765. (b) Sperry, J.
B.; Whitehead, C. R.; Ghiviriga, I.; Walczak, R. M.; Wright, D. L.
Electrooxidative Coupling of Furans and Silyl Enol Ethers:
Application to the Synthesis of Annulated Furans. J. Org. Chem.
2004, 69, 3726-3734. (c) Sperry, J. B.; Wright, D. L. The
Gem-Dialkyl Effect in Electron Transfer Reactions: Rapid Synthesis
of Seven-Membered Rings Through an Electrochemical
Annulation. J. Am. Chem. Soc. 2005, 127, 8034-8035. (d) Sperry, J.
B.; Constanzo, J. R.; Jasinski, J.; Butcher, R. J.; Wright, D. L. Studies
on the Diels-Alder Reaction of Annulated Furans: Application to
the Synthesis of Substituted Phenanthrenes. Tetrahedron Lett.
2005, 46, 2789-2793. (e) Sperry, J. B.; Wright, D. L. Annulated
Heterocycles Through a Radical-Cation Cyclization: Synthetic and
Mechanistic Studies. Tetrahedron 2006, 62, 6551-6557.
5. Redden, A.; Moeller, K. D. Anodic Coupling Reactions: Exploring
the Generality of Curtin-Hammett Controlled Reactions. Org. Lett.
2011, 13, 1678-1681.
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.