Journal of the American Chemical Society
Page 4 of 5
Scheme 3. Tentative mechanistic proposal.
(7)
For selected examples see (a) O’Hagan, D. J. Org. Chem.
2012, 48, 5247ꢀ4249. (b) Hunter, L.; Kirsch, P.; Slawin, A. M.
1
2
3
4
5
6
7
Z.; O’Hagan, D. Angew. Chem. Int. Ed. 2009, 48, 5457ꢀ5460.
(c) Hunter, L; O’Hagan, D. Org. Biomol. Chem. 2008, 6, 2843ꢀ
2848. (d) Nicoletti, M.; O’Hagan, D.; Slawin, A. M. Z. J. Am.
Chem. Soc. 2005, 127, 482ꢀ483.
Allꢀcis 1,2,3,4,5,6ꢀhexafluorocyclohexane, is reported to have
the largest dipole moment of any organic material Keddie, N.;
Slawin, A. M. Z.; Lebl, T.; Philp, D.; O’Hagan, D. Nat. Chem.
2015, 7, 483ꢀ488.
(8)
(9)
(10)
(11)
Tius, M. A. Tetrahedron 1995, 51, 6605ꢀ6634.
Sandford, G. J. Fluorine Chem. 2007, 128, 90ꢀ124.
8
9
(a) Cook, A.; Sanford, M. S. CꢀHal Bond Formation by Arene
CꢀH Activation. In Catalytic Transformations via C-H Activa-
tion, Vol. 2; Science of Synthesis, Yu, J.ꢀQ., Ed.; Thieme, 2015,
183–219; (b) McMurtrey, K. B.; Sanford, M. S. CꢀF Bondꢀ
Forming Reactions. In Cross-Coupling and Heck-Type Reac-
tions from the Science of Synthesis Reference Library. Vol. 2,
John P. Wolfe, Ed., Thieme, 2012, 551–565; (c) Campbell, M.;
Ritter, T. Chem. Rev. 2015, 115, 612–633.
(a) Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.;
Ryzhkov, L. R.; Siegler, M. A.; Lectka, T. J. Am. Chem. Soc.
2014, 136, 9780–9791; (b) Bloom, S.; Knippel, J. L.; Lectka,
T. Chem. Sci. 2014, 5, 1175–1178; (c) Pitts, C. R.; Bloom, M.
S.; Bume, D. D.; Zhang, Q. A.; Lectka, T. Chem. Sci. 2015, 6,
5225–5229.
(a) For an excellent review see Cresswell, A. J.; Eey, S. T.ꢀC.;
Denmark, S. E. Angew. Chem. Int. Ed. 2015, 54, 15642ꢀ15682;
(b) Cresswell, A. J.; Eey, S. T.ꢀC.; Denmark, S. Nat. Chem.
2015, 7, 146ꢀ152; (c) For examples of enantioselective vicinal
halogenation of allylic alcohols see Nicolaou, K. C.; Simmons,
N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc.
2011, 133, 8134ꢀ8137 (chlorination); Hu, D. X.; Shibuya, G.
M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960ꢀ12963
(bromination); (d) For I(II)ꢀcatalyzed dichlorination and diꢀ
bromination see Stodulski, M.; Goetzinger, A.; Kohlhepp, S.
V.; Gulder, T. Chem. Commun. 2014, 50, 3435ꢀ3438.
Hara, S.; Nakahigashi, J.; IshiꢀI, K.; Sawaguchi, M.; Fukuhara,
T.; Yoneda, N. Synlett 1998, 495ꢀ496. Also see Sawaguchi,
M.; Hara, S.; Fukuhara, T.; Yoneda, N. J. Fluorine Chem.
2000, 104, 277ꢀ280.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12)
(13)
ASSOCIATED CONTENT
Supporting Information
NMR spectra and experimental procedures. Supporting inforꢀ
mation is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*ryan.gilmour@uniꢀmuenster.de
(14)
(15)
Notes
The authors declare no competing financial interest.
For the discovery of aryliodonium(III) difluorides see Weinꢀ
land, R. F.; Stille, W. Chem. Ber. 1901, 34, 2631ꢀ2633. Also
see Edmunds, J. J.; Motherwell, W. B. J. Chem. Soc., Chem.
Commun., 1989, 881ꢀ883. For a review on hypervalent iodine
chemistry see Wirth, T. Angew. Chem. Int. Ed. 2005, 44, 3656ꢀ
3665.
Author Contributions
All authors have given approval to the final version of the manuꢀ
script.
(16)
For a facile synthesis of hypervalent iodine(III) reagents using
Selectfluor® see Ye, C.; Twamley, B.; Shreeve, J. M. Org Lett.
2005, 7, 3961ꢀ3964.
ACKNOWLEDGMENT
We acknowledge generous financial support from the WWU
Münster and the DFG (SFB 858, and Excellence Cluster EXC
1003). This manuscript is dedicated to Prof. Scott E. Denmark.
(17)
(18)
Selectfluor® can react directly with highly electron rich subꢀ
strates. See Lal, G. S. J. Org. Chem. 1993, 58, 271ꢀ2796.
For a recent example of the hypervalent iodine mediated fluorꢀ
ination of styrene derivatives to generate 2,2ꢀ
difluoroethylarenes see Kitamura, T.; Muta, K.; Oyamada, J. J.
Org. Chem. 2015, 80, 10431ꢀ10436.
REFERENCES
(1)
(2)
Wender, P. A.; Miller, B. L. Nature 2009, 460, 197ꢀ201.
(a) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem.
Commun. 2007, 1003ꢀ1022; (b) Nair, R. R; Ren, W.; Jalil, R.;
Riaz, I. ; Kravets,V. G.; Britnell, l.; Blake, P.; Schedin, F.;
Mayorov, A. S.; Yuan, S.; Katsnelson, M. I.; Cheng, H.ꢀM.;
Strupinski, W.; Bulusheva, L. G.; Okotrub, A. V.; Grigorieva,
I. V.; Grigorenko, A. N.; Novoselov, K. S.; Geim, A. K. Small
2010, 6, 2877–2884.
(19)
(20)
Full experimental details are provided in the SI.
(a) Kitamura, T.; Kuriki, S.; Muta, K.; Morshed, M. H.; Muta,
K.; Gondo, K.; Hori, Y.; Miyazaki, M. Synthesis 2013, 45,
3125ꢀ3130. (b) The addition of PhICl2 to olefins is catalysed by
TFA by a similar Hꢀbonding effect: Cotter, J. L.; Andrews, L.
J.; Keefer, R. M. J. Am. Chem. Soc. 1962, 84, 793ꢀ797.
Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.;
Muñiz, K. Angew. Chem. Int. Ed. 2016, 55, 413ꢀ417.
For recent syntheses of fluorodanicalipin A and bromoꢀ
danicalipin A see: (a) Fischer, S.; Huwyler, N.; Wolfrum, S.;
Carreira, E. M. Angew. Chem. Int. Ed. 2016, 55, 2555–2558;
(b) White, A. R.; Duggan, B. M.; Tsai, S.ꢀC.; Vanderwal, C. D.
Org. Lett. 2016, 18, 1124ꢀ1127.
(21)
(22)
(3)
(4)
(a) Ojima, I. J. Org. Chem. 2013, 78, 6358–6383; (b) Purser,
S.; Moore, P. R.; Swallow, S.; Gouverneur, V.
Chem. Soc. Rev. 2008, 37, 320ꢀ330.
(a) Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem. Int.
Ed. 2011, 50, 11860ꢀ11871 (b) Cahard, D.; Bizet, V. Chem.
Soc. Rev. 2014, 43, 135ꢀ147.
(23)
Coombs, J. R.; Morken, J. P. Angew. Chem. Int. Ed. 2016, 55,
2636ꢀ2649.
(5)
(6)
(a) Wolfe, S. Acc. Chem. Res. 1972, 5, 102ꢀ111. (b) O’Hagan,
D. Chem. Soc. Rev. 2008, 37, 308ꢀ319.
Huchet, Q. A.; Kuhn, B.; Wagner, B.; Kratochwil, N. A.;
Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E. M.; Müller,
K. J. Med. Chem. 2015, 58, 9041ꢀ9060.
ACS Paragon Plus Environment