Paper
RSC Advances
1
5 N. Narkhede, S. Singh and A. Patel, Green Chem., 2015, 17,
Conclusion
89–107.
We synthesized a series of triple-functional catalyst materials 16 A. I. Tropec ˆe lo, M. H. Casimiro, I. M. Fonseca, A. M. Ramos,
4
+
HPW/Ti/chitosan containing H
Such HPW/Ti/chitosan hybrids exhibited Brønsted acid from
HPW, Lewis acid from Ti and base from –NH
san, which presented synergetic effect on catalyzing of esteri-
cation reaction. HPW (29 wt%)/Ti/chitosan showed the highest 18 S. H. Zhu, X. Q. Gao, F. Dong, Y. L. Zhu, H. Y. Zheng and
conversion due to the suitable amount of HPW on chitosan. The
Y. W. Li, J. Catal., 2013, 306, 155–163.
7.3% conversion of palmitic acid to ester was achieved by HPW 19 R. S. Nunes, F. M. Altino, M. R. Meneghetti and
29 wt%)/Ti/chitosan. And little leaching of active sites of HPW
S. M. P. Meneghetti, Catal. Today, 2017, 289, 121–126.
and Ti from chitosan permitted it could be reused for at least six 20 J. Zhao, H. Y. Guan, W. Shi, M. X. Cheng, X. H. Wang and
times. The loading of Ti and HPW on chitosan could provide
S. W. Li, Catal. Commun., 2012, 20, 103–106.
a useful for fabrication of triple-functional and heterogeneous 21 V. Belessi, R. Zboril, J. Tucek, M. Mashlan, V. Tzitzios and
3
PW12
O
40, Ti and chitosan.
J. Vital and J. E. Castanheiro, Appl. Catal., A, 2010, 390, 183–
189.
group in chito- 17 K. Jagadeeswaraiah, C. R. Kumar, P. S. S. Prasad and
N. Lingaiah, Catal. Sci. Technol., 2014, 4, 2969–2977.
2
9
(
HPA catalysts for organic transformation.
D. Petridis, Chem. Mater., 2008, 20, 3298–3305.
2 R. C. Deltcheff, M. Fournier, R. Franck and R. Thouvenot,
Inorg. Chem., 1983, 22, 207–216.
3 J. Liu, W. Y. Li, Y. G. Liu, Q. H. Zeng and S. Hong, Appl. Surf.
Sci., 2014, 293, 46–54.
2
2
Conflicts of interest
There are no conicts to declare.
2
4 C. A. Emeis, J. Catal., 1993, 141, 347–354.
2
5 A. E. Kadib, K. Molvinger, C. Guimon, F. Quignard and
D. Brunel, Chem. Mater., 2008, 20, 2198–2204.
6 P. K. Sahu, P. K. Sahu, S. K. Gupta and D. D. Agarwal, Ind.
Eng. Chem. Res., 2014, 53, 2085–2091.
Acknowledgements
2
2
This work was supported by the National Natural Science Foun-
dation of China (No. 51578119), the major projects of Jilin
Provincial Science and Technology Department (20140204085GX).
7 K. Khan and Z. N. Siddiqui, Ind. Eng. Chem. Res., 2015, 54,
6611–6618.
2
2
8 M. Yamada and A. Maeda, Polymer, 2009, 50, 6076–6082.
9 A. J. Varma, S. V. Deshpande and J. F. Kennedy, Carbohydr.
Polym., 2004, 55, 77–93.
References
1
M. J. Janik, B. B. Bardin, R. J. Davis and M. Neurock, J. Phys.
Chem. B, 2006, 110, 4170–4178.
S. S. Wang and G. Y. Yang, Chem. Rev., 2015, 115, 4893–4962.
C. Baroi and A. K. Dalai, Ind. Eng. Chem. Res., 2014, 53,
3
0 R. Khan and M. Dhayal, Electrochem. Commun., 2008, 10,
4
92–495.
1 M. Yamada and I. Honma, Electrochim. Acta, 2005, 50, 2837–
841.
2
3
3
2
18611–18624.
3
3
2 S. Singh and A. Patel, J. Cleaner Prod., 2014, 72, 46–56.
3 G. Lawrie, I. Keen, B. Drew, A. C. Temple, L. Rintoul,
P. Fredericks and L. Grøndahl, Biomacromolecules, 2007, 8,
4
Q. Zhao, H. Wang, H. W. Zheng, Z. Sun, W. Shi, S. T. Wang,
X. H. Wang and Z. J. Jiang, Catal. Sci. Technol., 2013, 3, 2204–
2209.
2533–2541.
5
6
7
8
9
M. Y. Wang, Q. W. Song, R. Ma, J. N. Xie and L. N. He, Green
Chem., 2016, 18, 282–287.
N. R. Shiju, A. H. Alberts, S. Khalid, D. R. Brown and
G. Rothenberg, Angew. Chem., 2011, 123, 9789–9793.
K. Liu, Y. Q. Xu, Z. X. Yao, H. N. Miras and Y. F. Song,
ChemCatChem, 2016, 8, 929–937.
G. L. Maddikeri, A. B. Pandit and P. R. Gogate, Ind. Eng.
Chem. Res., 2012, 51, 14610–14628.
X. M. Meng, G. Y. Chen and Y. H. Wang, Fuel Process.
Technol., 2008, 89, 851–857.
3
4 Q. Gu, J. L. Long, H. Q. Zhuang, C. Q. Zhang, Y. G. Zhou and
X. X. Wang, Phys. Chem. Chem. Phys., 2014, 16, 12521–12534.
5 K. T. Karthikeyan, A. Nithya and K. Jothivenkatachalam, Int.
3
J.
Biol.
Macromol.,
2017,
DOI:
10.1016/
j.ijbiomac.2017.03.121.
6 M. Yan, G. L. Li, C. S. Guo, W. Guo, D. D. Ding, S. H. Zhang
and S. Q. Liu, Nanoscale, 2016, 8, 17828–17835.
7 R. Moucel, K. Perrigaud, J. M. Goupil, P. J. Madec, S. Marinel,
E. Guibal, A. C. Gaumont and I. Dez, Adv. Synth. Catal., 2010,
3
3
352, 433–439.
1
1
1
1
1
0 J. Y. Yan, Y. J. Yan, S. X. Liu, J. Hu and G. L. Wang, Bioresour.
3
3
4
8 K. Saravanan, B. Tyagi, R. S. Shukla and H. C. Bajaj, Appl.
Catal., B, 2015, 172–173, 108–115.
Technol., 2010, 102, 4755–4758.
1 Z. Z. Wen, X. H. Yu, S. T. Tu, J. Y. Yan and E. Dahlquist,
Bioresour. Technol., 2010, 101, 9570–9576.
2 I. Nurtri, G. P. Maniam, N. Hindryawati, M. M. Yusoff and
S. Ganesan, Energy Convers. Manage., 2013, 74, 395–402.
3 K. Jacobson, R. Gopinath, L. C. Meher and A. K. Dalai, Appl.
Catal., B, 2008, 85, 86–91.
9 R. J. Li, L. Chen and Z. C. Yan, J. Am. Oil Chem. Soc., 2012, 89,
7
05–711.
0 A. S. Badday, A. Z. Abdullah and K. T. Lee, Appl. Energy, 2013,
05, 380–388.
1
4
4
1 F. Zhang, Z. Fang and Y. T. Wang, Fuel, 2015, 150, 370–377.
2 R. A. Sheldon, M. Wallau, I. W. C. E. Arends and
U. Schuchardt, Acc. Chem. Res., 1998, 31, 485–493.
4 G. Baskar and R. Aiswarya, Renewable Sustainable Energy
Rev., 2016, 57, 496–504.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 42422–42429 | 42429