RSC Advances
Paper
21 A. S. Bharadwaj, M. Singh, S. Niju, K. M. S. Begum and 34 J. Canivet, M. Vandichel and D. Farrusseng, Origin of highly
N. Anantharaman, Biodiesel production from rubber seed
oil using calcium oxide derived from eggshell as catalyst–
active metal–organic framework catalysts: defects? Defects!,
Dalton Trans., 2016, 45, 4090–4099.
optimization and modeling studies, Green Process. Synth., 35 Y. Liu, R. C. Klet, J. T. Hupp and O. Farha, Probing the
2019, 8, 430–442.
correlations between the defects in metal–organic
frameworks and their catalytic activity by an epoxide ring-
opening reaction, Chem. Commun., 2016, 52, 7806–7809.
´
´
´
˜
22 N. Gutierrez-Ortega, E. Ramos-Ramırez, A. Serafın-Munoz,
A. Zamorategui-Molina and J. Monjaraz-Vallejo, Use of Co/
Fe-Mixed Oxides as Heterogeneous Catalysts in Obtaining 36 X. Liang, M. Zeng and C. Qi, One-step synthesis of carbon
Biodiesel, Catalysts, 2019, 9, 403.
functionalized with sulfonic acid groups using
23 J. Toledo Arana, J. J. Torres, D. F. Acevedo, C. O. Illanes,
hydrothermal carbonization, Carbon, 2010, 48, 1844–1848.
N. A. Ochoa and C. L. Pagliero, One-Step Synthesis of CaO- 37 X. Liang and J. Yang, Synthesis of a novel carbon based
ZnO Efficient Catalyst for Biodiesel Production, Int. J.
Chem. Eng., 2019, 2019, 1806017.
strong acid catalyst through hydrothermal carbonization,
Catal. Lett., 2009, 132, 460.
24 A. Buasri, K. Rochanakit, W. Wongvitvichot, U. Masa-ard and 38 F. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng and F.-S. Xiao,
V. Loryuenyong, The application of calcium oxide and
magnesium oxide from natural dolomitic rock for
biodiesel synthesis, Energy Procedia, 2015, 79, 562–566.
25 D. A. Kamel, H. A. Farag, N. K. Amin, A. A. Zatout and
Transesterication catalyzed by ionic liquids on
superhydrophobic mesoporous polymers: heterogeneous
catalysts that are faster than homogeneous catalysts, J. Am.
Chem. Soc., 2012, 134, 16948–16950.
R. M. Ali, Smart utilization of jatropha (Jatropha curcas 39 X. Chen, P. Qian, T. Zhang, Z. Xu, C. Fang, X. Xu, W. Chen,
Linnaeus) seeds for biodiesel production: optimization and
mechanism, Ind. Crop. Prod., 2018, 111, 407–413.
P. Wu, Y. Shen and S. Li, Catalyst surfaces with tunable
hydrophilicity and hydrophobicity: metal–organic
26 K. Fukuhara, K. Nakajima, M. Kitano, S. Hayashi and
M. Hara, Transesterication of Triolein over hydrophobic
frameworks toward controllable catalytic selectivity, Chem.
Commun., 2018, 54, 3936–3939.
microporous carbon with SO3H groups, ChemCatChem, 40 Y. Hu, L. Dai, D. Liu and W. Du, Rationally designing
2015, 7, 3945–3950.
27 F. Liu, W. Kong, C. Qi, L. Zhu and F.-S. Xiao, Design and
synthesis of mesoporous polymer-based solid acid catalysts
hydrophobic UiO-66 support for the enhanced enzymatic
performance of immobilized lipase, Green Chem., 2018, 20,
4500–4506.
with excellent hydrophobicity and extraordinary catalytic 41 G. Ye, D. Zhang, X. Li, K. Leng, W. Zhang, J. Ma, Y. Sun,
activity, ACS Catal., 2012, 2, 565–572.
W. Xu and S. Ma, Boosting Catalytic Performance of
Metal–Organic Framework by Increasing the Defects via
a Facile and Green Approach, ACS Appl. Mater. Interfaces,
2017, 9, 34937–34943.
28 F. Liu, X. Meng, Y. Zhang, L. Ren, F. Nawaz and F.-S. Xiao,
Efficient and stable solid acid catalysts synthesized from
sulfonation of swelling mesoporous polydivinylbenzenes, J.
Catal., 2010, 271, 52–58.
29 F. Liu, K. Huang, A. Zheng, F.-S. Xiao and S. Dai,
Hydrophobic solid acids and their catalytic applications in
green and sustainable chemistry, ACS Catal., 2017, 8, 372–
391.
30 K. Nakajima, R. Noma, M. Kitano and M. Hara, Titania as an
early transition metal oxide with a high density of Lewis acid
sites workable in water, J. Phys. Chem. C, 2013, 117, 16028–
16033.
42 A. S. Abou-Elyazed, G. Ye, Y. Sun and A. M. El-Nahas, A Series
of UiO-66 (Zr)-Structured Materials with Defects as
Heterogeneous Catalysts for Biodiesel Production, Ind. Eng.
Chem. Res., 2019, 58, 21961–21971.
43 A. I. Osman, J. K. Abu-Dahrieh, D. W. Rooney, S. A. Halawy,
M. A. Mohamed and A. Abdelkader, Effect of precursor on
the performance of alumina for the dehydration of
methanol to dimethyl ether, Appl. Catal., B, 2012, 127, 307–
315.
31 Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, 44 X. Shi, R. Rosa and A. Lazzeri, On the coating of precipitated
Zr-based metal–organic frameworks: design, synthesis,
structure, and applications, Chem. Soc. Rev., 2016, 45,
2327–2367.
calcium carbonate with stearic acid in aqueous medium,
Langmuir, 2010, 26, 8474–8482.
45 Y.-X. Zeng, X.-W. Zhong, Z.-Q. Liu, S. Chen and N. Li,
Preparation and enhancement of thermal conductivity of
heat transfer oil-based MoS2 nanouids, J. Nanomater.,
2013, 2013, 1–6.
32 K. Leus, T. Bogaerts, J. De Decker, H. Depauw, K. Hendrickx,
H. Vrielinck, V. Van Speybroeck and P. Van Der Voort,
Systematic study of the chemical and hydrothermal
stability of selected “stable” metal organic frameworks, 46 J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti,
Microporous Mesoporous Mater., 2016, 226, 110–116.
33 C. Caratelli, J. Hajek, F. G. Cirujano, M. Waroquier,
F. X. L. i. Xamena and V. Van Speybroeck, Nature of active
sites on UiO-66 and benecial inuence of water in the
S. Bordiga and K. P. Lillerud, A new zirconium inorganic
building brick forming metal organic frameworks with
exceptional stability, J. Am. Chem. Soc., 2008, 130, 13850–
13851.
catalysis of Fischer esterication, J. Catal., 2017, 352, 401– 47 E. G. Fawaz, D. A. Salam, L. Pinard and T. J. Daou, Study on
414.
the catalytic performance of different crystal morphologies
of HZSM-5 zeolites for the production of biodiesel:
41294 | RSC Adv., 2020, 10, 41283–41295
This journal is © The Royal Society of Chemistry 2020