iron-catalyzed cross-coupling using alkenyl sulfides as
coupling components.9
with p-MeOC6H4MgBr (3.0 equiv) in the presence of
Fe(acac)3 (5 mol %) in THF at room temperature (Scheme
2). After usual workup, we found that p-methoxystyrene 3
To examine whether the 2-pyrimidyl group is essential or
not in this cross-coupling, phenyl vinyl sulfide (2) was treated
(3) (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487. (b)
Tamura, M.; Kochi, J. K. Synthesis 1971, 303. (c) Tamura, M.; Kochi, J.
J. Organomet. Chem. 1971, 31, 289. (d) Neumann, S. M.; Kochi, J. K. J.
Org. Chem. 1975, 40, 599. (e) Smith, R. S.; Kochi, J. K. J. Org. Chem.
1976, 41, 502. (f) Kwan, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1976, 98,
4903. (g) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351.
Scheme 2
(4) Alkenyl halides/Grignard reagents: (a) Molander, G. A.; Rahn, B.
J.; Shubert, D. C.; Bonde, S. E. Tetrahedron Lett. 1983, 24, 5449. (b) Cahiez,
G.; Avedissian, H. Synthesis 1998, 1199. (c) Dohle, W.; Kopp, F.; Cahiez,
G.; Knochel, P. Synlett 2001, 1901. (d) Fakhfakh, M. A.; Franck, X.;
Hocquemiller, R.; Figade`re, B. J. Organomet. Chem. 2001, 624, 131. (e)
Ho¨lzer, B.; Hoffmann, R. W. Chem. Commun. 2003, 732. Alkenyl halides/
organolithium reagents: (f) Walborsky, H. M.; Banks, R. B. J. Org. Chem.
1981, 46, 5074. Alkenyl halides/organomanganese reagents: (g) Cahiez,
G.; Marquais, S. Tetrahedron Lett. 1996, 37, 1773. (h) Cahiez, G.; Marquais,
S. Pure Appl. Chem. 1996, 68, 53. (i) Fu¨rstner, A.; Brunner, H. Tetrahedron
Lett. 1996, 37, 7009. Alkenyl sulfones/Grignard reagents: (j) Fabre, J. L.;
Julia, M.; Verpeaux, J. N. Tetrahedron Lett. 1982, 23, 2469. (k) Alvarez,
E.; Cuvigny, T.; du Penhoat, C. H.; Julia, M. Tetrahedron 1988, 44, 111.
(l) Alvarez, E.; Cuvigny, T.; du Penhoat, C. H.; Julia, M. Tetrahedron 1988,
44, 119. Acyl halides/Grignard reagents: (m) Percival, W. C.; Wagner, R.
B.; Cook, N. C. J. Am. Chem. Soc. 1953, 75, 3731. (n) Fiandanese, V.;
Marchese, G.; Martina, V.; Ronzini, L. Tetrahedron Lett. 1984, 25, 4805.
(o) Ritter, K.; Hanack, M. Tetrahedron Lett. 1985, 26, 1285. (p) Cardel-
licchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. Tetrahedron Lett.
1987, 28, 2053. (q) Dell′Anna, M. M.; Mastrorilli, P.; Nobile, C. F.;
Marchese, G.; Taurino, M. R. J. Mol. Catal. A: Chem. 2000, 161, 239. (r)
Reddy, C. K.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1700.
Thioesters/Grignard reagents: (s) Cardellicchio, C.; Fiandanese, V.; Marchese,
G.; Ronzini, L. Tetrahedron Lett. 1985, 26, 3595. Allylic phosphates/
Grignard reagents: (t) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Synlett
1991, 513. (u) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Tetrahedron
1994, 50, 6017. Aryl halides (triflates)/Grignard reagents: (v) Fu¨rstner, A.;
Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609. (w) Fu¨rstner, A.; Leitner,
A.; Me´ndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. (x)
Quintin, J.; Franck, X.; Hocquemiller, R.; Figade`re, B. Tetrahedron Lett.
2002, 43, 3547. (y) Fu¨rstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2003,
42, 308. (z) Hocek, M.; Hockova´, D.; Dvrˇa´kova´, H. Synthesis 2004, 889.
(5) (a) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem.
Soc. 2004, 126, 3686. (b) Nagao, T.; Hayashi, T. Org. Lett. 2004, 6, 1297.
(c) Martin, R.; Fu¨rstner, A. Angew. Chem., Int. Ed. 2004, 43, 3955. See
also: (d) Brinker, U. H.; Ko¨nig, L. Chem. Ber. 1983, 116, 882. (e) Nishii,
Y.; Wakasugi, K.; Tanabe, Y. Synlett 1998, 67. (f) Bedford, R. B.; Bruce,
D. W.; Frost, R. M.; Goodby, J. W.; Hird, M. Chem. Commun. 2004, 2822.
(6) Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am. Chem. Soc.
2004, 126, 11778.
is exclusively produced in this reaction (74% yield). 4-Meth-
oxybiphenyl 4 (product derived from the cross-coupling at
the phenyl-S bond) was obtained only in 2% yield as judged
by GC and NMR analysis.
As for catalyst precursor, FeCl3, FeCl2, and Fe(OAc)2 can
also be used in this cross-coupling, albeit in somewhat lower
yields. In all cases examined, 3 was exclusively produced.
The organozinc reagents were found not to be applicable in
this cross-coupling. The addition of coordinating additives
such as TMEDA (N,N,N′,N′-tetramethylethylenediamine),
2,2′-bipyridyl, and 1-methyl-2-pyrrolidinone (NMP), which
exert beneficial effects in the reported iron catalysis only
had detrimental effects in this cross-coupling.
The control experiment using diphenyl sulfide (5) un-
doubtedly corroborated that the iron-catalyzed cross-coupling
at aryl-S bond is extremely sluggish (Scheme 3). This is in
Scheme 3
(7) For our related works on multisubstituted olefin synthesis, see: (a)
Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J. J.
Am. Chem. Soc. 2000, 122, 12013. (b) Itami, K.; Nokami, T.; Yoshida, J.
J. Am. Chem. Soc. 2001, 123, 5600. (c) Itami, K.; Nokami, T.; Ishimura,
Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 11577.
(d) Itami, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 14670.
(e) Itami, K.; Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J. Org. Lett.
2004, 6, 3695. (f) Itami, K.; Tonogaki, K.; Ohashi, Y.; Yoshida, J. Org.
Lett. 2004, 6, 4093.
(8) This observation is in line with the finding of Fu¨rstner that cross-
coupling took place at the pyrimidyl-Cl bond rather than pyrimidyl-S
bond when 4-chloro-2-methylthiopyrimidine was treated with Grignard
reagent in the presence of Fe(acac)3 catalyst.4w
(9) There are many reports on nickel- or palladium-catalyzed cross-
coupling reaction using sulfides. For early works, see: (a) Okamura, H.;
Miura, M.; Takei, H. Tetrahedron Lett. 1979, 43. (b) Wenkert, E.; Ferreira,
T. W.; Michelotti, J. Chem. Soc., Chem. Commun. 1979, 637. (c) Takei,
H.; Miura, M.; Sugimura, H.; Okamura, H. Tetrahedron Lett. 1979, 1447.
(d) Okamura, H.; Takei, H. Tetrahedron Lett. 1979, 3425. For a review,
see: (e) Luh, T.-Y.; Ni, Z.-J. Synthesis 1990, 89. For recent examples, see:
(f) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron
Lett. 1998, 39, 3189. (g) Srogl, J.; Liu, W.; Marshall, D.; Liebeskind, L. S.
J. Am. Chem. Soc. 1999, 121, 9449. (h) Liebeskind, L. S.; Srogl, J. J. Am.
Chem. Soc. 2000, 122, 11260. (i) Savarin, C.; Srogl, J. Liebeskind, L. S.
Org. Lett. 2000, 2, 3229. (j) Angiolelli, M. E.; Casalnuovo, A. L.; Selby,
T. P. Synlett 2000, 905. (k) Shimizu, T.; Seki, M. Tetrahedron Lett. 2002,
43, 1039. (l) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979. (m)
Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G.
Synlett 2002, 447. (n) Reference 6.
a sharp contrast to the usual Pd- or Ni-catalyzed processes
where both alkenyl and aryl compoments can participate in
cross-coupling. The emergence of such bond selectivity
(alkenyl-S . aryl-S) is extremely intriguing not only from
a mechanistic point of view but also from a synthetic point
of view.
Next, we examined the cross-coupling of 2 with several
Grignard reagents to roughly grasp the scope of this new
cross-coupling procedure (Table 1).10 As already mentioned,
the reaction with p-MeOC6H4MgBr proceeded smoothly to
give p-methoxystyrene in 74% yield (entry 1). On the other
hand, the reactions using m-MeOC6H4MgBr and o-MeOC6H4-
MgBr furnished the cross-coupling products in much lower
yields (entries 2 and 3). Unfortunately, alkynyl Grignard
reagents were not applicable in this cross-coupling (entry
4). However, the use of alkyl Grignard reagent (C12H25MgBr)
1220
Org. Lett., Vol. 7, No. 7, 2005