Molecules 2018, 23, 1234
11 of 12
14. Scaiano, J.C.; Stamplecoskie, K. Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic
Photoreactions? From Designer Nanoparticles to Custom Applications. J. Phys. Chem. Lett. 2013, 4, 1177–1187.
15. Boyd, D.A.; Greengard, L.; Brongersma, M.; El-Naggar, M.Y.; Goodwin, D.G. Plasmon-Assisted Chemical
16. Nguyen, D.; Stolaroff, J.; Esser-Kahn, A. Solvent Effects on the Photothermal Regeneration of CO2 in
Monoethanolamine Nanofluids. ACS Appl. Mat. Interface. 2015, 7, 25851–25856. [CrossRef] [PubMed]
17. Wu, M.C.; Deokar, A.R.; Liao, J.H.; Shih, P.Y.; Ling, Y.C. Graphene-Based Photothermal Agent for Rapid and
Effective Killing of Bacteria. ACS Nano 2013, 7, 1281–1290. [CrossRef] [PubMed]
18. Hoogeboom-Pot, K.M.; Hernandez-Charpak, J.N.; Gu, X.; Frazer, T.D.; Anderson, E.H.; Chao, W.; Falcone, R.W.;
Yang, R.; Murnane, M.M.; Kapteyn, H.C.; et al. A new regime of nanoscale thermal transport: Collective
diffusion increases dissipation efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 4846–4851. [CrossRef] [PubMed]
19. Govorov, A.O.; Richardson, H.H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.
20. Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887.
21. Qin, Z.; Bischof, J.C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev.
22. Buffat, P.; Borel, J.P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.
23. Strasser, M.; Setoura, K.; Langbein, U.; Hashimoto, S. Computational Modeling of Pulsed Laser-Induced
Heating and Evaporation of Gold Nanoparticles. J. Phys. Chem. C 2014, 118, 25748–25755. [CrossRef]
24. Collard, D.M.; Fox, M.A. Use of electroactive thiols to study the formation and exchange of alkanethiol
monolayers on gold. Langmuir 1991, 7, 1192–1197. [CrossRef]
25. Häkkinen, H. The gold—Sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455. [CrossRef] [PubMed]
26. Chen, Y.S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Enhanced thermal stability
of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Exp. 2010
,
27. Li, J.; Han, J.; Xu, T.; Guo, C.; Bu, X.; Zhang, H.; Wang, L.; Sun, H.; Yang, B. Coating Urchinlike Gold
Nanoparticles with Polypyrrole Thin Shells To Produce Photothermal Agents with High Stability and
Photothermal Transduction Efficiency. Langmuir 2013, 29, 7102–7110. [CrossRef] [PubMed]
28. DeSantis, C.J.; Huang, D.; Zhang, H.; Hogan, N.J.; Zhao, H.; Zhang, Y.; Manjavacas, A.; Zhang, Y.;
Chang, W.S.; Nordlander, P.; et al. Laser-Induced Spectral Hole-Burning through a Broadband Distribution
of Au Nanorods. J. Phys. Chem. C 2015, 120, 20518–20524. [CrossRef]
29. Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of Iron Oxide
Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and
Photothermal Bimodal Treatment. ACS Nano 2016, 10, 2436–2446. [CrossRef] [PubMed]
30. Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.J.; Pugliese, G.; et al. Plasmonic
Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects.
31. Hessel, C.M.; Pattani, V.P.; Rasch, M.; Panthani, M.G.; Koo, B.; Tunnell, J.W.; Korgel, B.A. Copper Selenide
Nanocrystals for Photothermal Therapy. Nano Lett. 2011, 11, 2560–2566. [CrossRef] [PubMed]
32. Jiang, R.; Cheng, S.; Shao, L.; Ruan, Q.; Wang, J. Mass-Based Photothermal Comparison Among Gold
Nanocrystals, PbS Nanocrystals, Organic Dyes, and Carbon Black. J. Phys. Chem. C 2013, 117, 8909–8915.
33. Johnson, R.J.G.; Haas, K.M.; Lear, B.J. Fe3O4 nanoparticles as robust photothermal agents for driving high
barrier reactions under ambient conditions. Chem. Comm. 2015, 51, 417–420. [CrossRef] [PubMed]
34. Vreeland, E.C.; Watt, J.; Schober, G.B.; Hance, B.G.; Austin, M.J.; Price, A.D.; Fellows, B.D.; Monson, T.C.;
Hudak, N.S.; Maldonado-Camargo, L.; et al. Enhanced Nanoparticle Size Control by Extending LaMer’s
Mechanism. Chem. Mat. 2015, 27, 6059–6066. [CrossRef]
35. Sun, S.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205.