Molecules 2021, 26, 4603
8 of 9
References
1.
2.
3.
Filippi, L.; Chiaravalloti, A.; Schillaci, O.; Cianni, R.; Bagni, O. Theranostic approaches in nuclear medicine: Current status and
future prospects. Exp. Rev. Med. Devic. 2020, 17, 331–343. [CrossRef]
Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. New Strategies in Prostate Cancer: Prostate-Specific Membrane
Antigen (PSMA) Ligands for Diagnosis and Therapy. Clin. Cancer Res. 2016, 22, 9–15. [CrossRef] [PubMed]
Knapp, F.F.; Dash, A. Radiopharmaceuticals for Therapy, 1st ed.; Springer: New Delhi, India, 2016.
4.
5.
Stapleton, S.; Jaffray, D.; Milosevic, M. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery.
Adv. Drug Deliv. Rev. 2017, 109, 119–130. [CrossRef]
6.
7.
8.
9.
Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer 2016, 16, 201–218. [CrossRef] [PubMed]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402–418. [CrossRef] [PubMed]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [CrossRef] [PubMed]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564. [CrossRef]
10. Howell, R.W. Auger processes in the 21st century. Int. J. Radiat. Biol. 2008, 84, 959–975. [CrossRef]
11. Kassis, A.I. The Amazing World of Auger Electrons. Int. J. Radiat. Biol. 2004, 80, 789–803. [CrossRef]
12. Reissig, F.; Mamat, C.; Steinbach, J.; Pietzsch, H.-J.; Freudenberg, R.; Navarro-Retamal, C.; Caballero, J.; Kotzerke, J.; Wunderlich,
G. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene
Derivatives and the Effect of Bonding Distance. PLoS ONE 2016, 11, e0161973. [CrossRef]
13. Cornelissen, B.; Vallis, K.A. Targeting the nucleus: An overview of Auger-electron radionuclide therapy. Curr. Drug Discov.
14. Buchegger, F.; Antonescu, C.; Delaloye, A.B.; Helg, C.; Kovacsovics, T.; Kosinski, M.; Mach, J.-P.; Ketterer, N. Long-term complete
responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin’s lymphoma. Br. J. Cancer 2006, 94,
15. Morgenroth, A.; Dinger, C.; Zlatopolskiy, B.D.; Al-Momani, E.; Glatting, G.; Mottaghy, F.M.; Reske, S.N. Auger electron emitter
0
0
against multiple myeloma—Targeted endo-radio-therapy with 125I-labeled thymidine analogue 5-iodo-4 -thio-2 -deoxyuridine.
Nucl. Med. Biol. 2008, 38, 1067–1077. [CrossRef]
16. Othman, M.F.B.; Mitry, N.R.; Lewington, V.J.; Blower, P.J.; Terry, S.Y.A. Re-assessing gallium-67 as a therapeutic radionuclide.
17. Imstepf, S.; Pierroz, V.; Raposinho, P.; Bauwens, M.; Felber, M.; Fox, T.; Shapiro, A.B.; Freudenberg, R.; Fernandes, C.; Gama, S.;
et al. Nuclear Targeting with an Auger Electron Emitter Potentiates the Action of a Widely Used Antineoplastic Drug. Bioconjug.
18. Thisgaard, H.; Jensen, M.; Elema, D.R. Medium to large scale radioisotope production for targeted radiotherapy using a small
PET cyclotron. Appl. Rad. Isot. 2011, 69, 1–7. [CrossRef]
19. McQuade, P.; McCarthy, D.W.; Welch, M.J. Positron Emission Tomography: Metal Radionuclides for PET Imaging; Springer: London,
UK, 2003; pp. 237–250.
20. Ku, A.; Facca, V.J.; Cai, Z.; Reilly, R.M. Auger electrons for cancer therapy—A review. EJNMMI Radiopharm. Chem. 2019, 4, 1–36.
21. AJensen, I.; Zhuravlev, F.; Severin, G.; Magnus, C.B.; Fonslet, J.; Köster, U.; Jensen, M. A solid support generator of the Auger
electron emitter rhodium-103m from [103Pd]palladium. Appl. Rad. Isot. 2020, 156, 108985. [CrossRef] [PubMed]
22. Filosfov, D.; Kurakina, E.; Radchenko, V. Potent candidates for Targeted Auger Therapy: Production and radiochemical
considerations. Nucl. Med. Biol. 2021, 94, 1–19.
23. Gokel, G.W.; Leevy, W.M.; Weber, M.W. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological
24. Martell, A.E.; Hancock, R.D. Metal Complexes in Aqueous Solutions, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013.
25. Skarnemark, G.; Ödegaard-Jensen, A.; Nilsson, J.; Bartos, B. Production of 103mRh for cancer therapy. J. Rad. Nucl. Chem. 2009
,
26. Wolford, T.L.; Musker, W.K. Cobalt(II) and rhodium(III) complexes of 1,5-dithiacyclooctane (1,5-DTCO) and 1,5,9,13-
tetrathiacyclohexadecane (TTH). Inorg. Chim. Acta 1991, 182, 19–23. [CrossRef]
27. Blake, A.J.; Reid, G.; Schröder, M. Platinum metal thioether macrocyclic complexes: Synthesis, electrochemistry, and single-
crystal X-ray structures of cis-[RhCl2L2]PF6 and trans-[RhCl2L3]PF6 (L2 = 1,4,8,11-tetrathiacyclotetradecane, L3 = 1,5,9,13-
tetrathiacyciohexadecane). J. Chem. Soc. Dalton Trans. 1989, 1, 1675–1680. [CrossRef]
28. Lyczko, M.; Pruszynski, M.; Majkowska-Pilip, A.; Lyczko, K.; Was, B.; Meczynska-Wielgosz, S.; Kruszewski, M.; Szkliniarz, K.;
Jastrzebski, J.; Stolarz, A.; et al. 211At labeled substance P (5–11) as potential radiopharmaceutical for glioma treatment. Nucl.
29. Li, N.; Struttmnan, M.; Higginbotham, C.; Grall, J.; Skerlj, J.F.; Vollano, J.F.; Bridger, S.A.; Ochrymowycz, L.A.; Ketring, A.R.;
Abram, M.J.; et al. Biodistribution of model 105Rh-labeled tetradentate thiamacrocycles in rats. Nucl. Med. Biol. 1997, 24, 85–92.