Aliphatic Sulfonation, 16
FULL PAPER
1
nation procedures and analysis: These were analogous to those de-
scribed previously.[5,25,26] Ϫ 1H- and 13C NMR: Bruker AC-200 and
WM-250 spectrometers. Of the various types of the homogeneous
reaction mixtures the 1H- and 13C-NMR spectra were recorded ap-
plying APT (attached proton technique), COSY,[27] double reson-
ance, and CH correlation,[28] as appropriate. The structural assign-
ments of the components of the reaction mixtures were made on
the basis of the observed 1H-NMR chemical shifts, absorption ra-
tios and coupling constants in combination with the 1H-NMR-
shielding parameters of the ϪSO2ϪOϪ and SO3H substitu-
ents.[1,29] The product compositions of the various reaction mix-
tures were determined by multicomponent 1H-NMR analysis on
the basis of specific absorptions of the assigned components.[29]
2-Butyl Chlorosulfate (5b): H NMR (CDCl3): δ ϭ 5.04 (m, 1 H),
1.83 (m, 2 H), 1.54 (d, J ϭ 6.3 Hz, 3 H, 1-Me), 1.01 (t, J ϭ 7.4
Hz, 3 H, 4-Me). Ϫ 13C NMR (CDCl3): δ ϭ 19.7 (C-1), 90.8 (C-2),
29.1 (C-3), 9.4 (C-4).
1
2-Pentyl Chlorosulfate (5c): H NMR (CDCl3): δ ϭ 5.02 (m, 1 H),
1.80 (m, 2 H), 1.47 (d, J ϭ 6.3 Hz, 3 H, 1-Me), 1.42 (m, 2 H), 0.91
(t, J ϭ 7.2 Hz, 3 H, 5-Me).
1
3-Pentyl Chlorosulfate (5d): H NMR (CDCl3): δ ϭ 4.84 (m, 1 H),
1.65 (m, 4 H), 0.96 (t, J ϭ 7.4 Hz, 6 H).
1
2-Hexyl Chlorosulfate (5e): H NMR (CDCl3): δ ϭ 5.06 (m, 1 H),
1.80 (m, 2 H), 1.53 (d, J ϭ 6.2 Hz, 3 H, 1-Me), 1.35 (m, 4 H), 0.89
(3 H, 6-Me).
NMR-Spectroscopic Data of the Sulfo Products
1
3-Hexyl Chlorosulfate (5f): H NMR (CDCl3): δ ϭ 4.95 (m, 1 H),
1,2-Cyclopentanesultone (2a):[12] 1H NMR (CDCl3): δ ϭ 4.97 (m,
1 H), 4.91 (m, 1 H), 1.50Ϫ2.50 (m, 6 H).
1.80 (m, 4 H), 1.40 (m, 2 H), 0.99 (t, J ϭ 7.4 Hz, 3 H, 1-Me), 0.94
(t, J ϭ 7.1 Hz, 3 H, 6-Me).
trans-2,3-Butanesultone (2b):[30] 1H NMR (CDCl3): δ ϭ 4.33 (m, 1
H, CHS), 4.21 (m, 1 H, CHO), 1.59 (d, J ϭ 7.3, 3 H, 1-Me), 1.57
(d, J ϭ 7.3, 3 H, 4-Me).
2-Octyl Chlorosulfate (5g): H NMR (CDCl3): δ ϭ 5.08 (m, 1 H),
1
1.76 (m, 2 H), 1.54 (d, J ϭ 6.3 Hz, 3 H, 1-Me), 1.25Ϫ1.35 (m, 8
H), 0.84 ( 3 H, 8-Me).
cis-2,3-Butanesultone (2c):[30] 1H NMR (CDCl3): δ ϭ 4.88 (m, 1 H,
CHS), 4.76 (m, 1 H, CHO), 1.50 (d, J ϭ 7.2, 3 H, 1-Me), 1.48 (d,
J ϭ 6.3, 3 H, 4-Me).
1
3-Octyl Chlorosulfate (5h): H NMR (CDCl3): δ ϭ 4.98 (m, 1 H),
1.80 (m, 4 H), 1.35 (m, 6 H), 0.99 (t, J ϭ 7.3 Hz, 3 H, 1-Me), 0.85
(3 H, 8-Me).
1,2-Butanesultone (2d):[12] 1H NMR (CDCl3): δ ϭ 4.54 (dd, J ϭ
12.3, 7.5, 1 H, CHS), 4.40 (m, 1 H, CHO), 4.11 (dd, J ϭ 12.3, 5.5,
1 H, CHS), 1.90 (m, 2 H), 0.94 (t, J ϭ 7.3, Me).
1
4-Octyl Chlorosulfate (5i): H NMR (CDCl3): δ ϭ 4.98 (m, 1 H),
1.80 (m, 4 H), 1.35 (m, 6 H), 0.94 (m, 6 H).
trans-2,3-Pentanesultone (2h): 1H NMR (CDCl3): δ ϭ 4.34 (m, 1
H, CHS), 3.98 (m, 1 H, CHO), 1.89 (m, 2 H), 1.57 (d, J ϭ 7.1, 3
H, 1-Me), 0.96 (t, J ϭ 7.4, 3 H, 5-Me).
Acknowledgments
1
The authors wish to thank Dr. T. A. B. M. Bolsman and Dr. Ir. A.
van Zon for stimulating discussions, and Mrs. H. van der Laan-
Ctvrteckova for recording the NMR spectra. The financial support
by Shell Research B.V. is gratefully acknowledged.
cis-2,3-Pentanesultone (2i): H NMR (CDCl3): δ ϭ 4.85 (m, 1 H,
CHS), 4.45 (m, 1 H, CHO), 1.65 (m, 2 H), 1.43 (d, J ϭ 6.6, 3 H,
1-Me), 0.98 (t, J ϭ 7.4, 3 H, 5-Me).
trans-4,5-Octanesultone (2e):[1] 13C NMR (CDCl3): δ ϭ 77.7
(CHS), 72.5 (CHO), 36.5 (C-6, CH2), 30.4 (C-3, CH2), 19.9 (CH2),
18.1 (CH2), 13.5 (CH3), 13.4 (CH3).
[1]
B. H. Bakker, H. Cerfontain, Tetrahedron Lett. 1987, 28,
1699Ϫ1702.
[2]
cis-4,5-Octanesultone (2f):[1] 13C NMR (CDCl3): δ ϭ 75.0 (CHS),
70.0 (CHO), 31.7 (C-6, CH2), 26.3 (C-3, CH2), 20.6 (CH2), 18.3
(CH2), 13.5 (CH3), 13.4 (CH3).
B. H. Bakker, H. Cerfontain, Tetrahedron Lett. 1989, 30,
5451Ϫ5453.
[3]
R. M. Schonk, B. H. Bakker, H. Cerfontain, Recl. Trav. Chim.
Pays-Bas 1992, 111, 389Ϫ401.
[4]
R. M. Schonk, B. H. Bakker, H. Cerfontain, Recl. Trav. Chim.
1,2-Octanesultone (2g):[1] 13C NMR (CDCl3): δ ϭ 64.2 (CH2S),
65.6 (CHO), 34.9 (CH2), 31.4 (CH2), 28.5 (CH2), 24.5 (CH2), 22.4
(CH2), 14.0 (CH3).
Pays-Bas 1992, 111, 478Ϫ489.
[5]
H. Cerfontain, J. B. Kramer, R. M. Schonk, B. H. Bakker, Recl.
Trav. Chim. Pays-Bas 1995, 114, 410Ϫ420.
[6]
D. W. Roberts, D. L. Williams, Tetrahedron 1987, 43,
trans-2,3-Hexanesultone (2j): 1H NMR (CDCl3): δ ϭ 4.45 (m, 1 H,
CHS), 4.13 (m, 1 H, CHO), 1.88 (m, 2 H), 1.64 (d, J ϭ 7.1, Me),
1.43 (m, 2 H), 0.96 (t, J ϭ 7.3, Me).
1027Ϫ1062.
[7]
J. L. Boyer, J. P. Canselier, V. Castro, J. Am. Oil Chem. Soc.
1982, 59, 458Ϫ464.
[8]
C. M. Suter, B. P. Evans, J. M. Kiefer, J. Am. Chem. Soc. 1938,
1
60, 538Ϫ540.
cis-2,3-Hexanesultone (2k): H NMR (CDCl3): δ ϭ 4.97 (m, 1 H,
[9]
E. E. Gilbert, Chem. Rev. 1962, 62, 549Ϫ581.
CHS), 4.64 (m, 1 H, CHO).
[10]
H. Cerfontain, Mechanistic Aspects in Aromatic Sulfonation and
trans-2,3-Octanesultone (2l): 1H NMR (CDCl3): δ ϭ 4.38 (m, 1 H,
CHS), 4.07 (m, 1 H, CHO), 1.87 (m, 2 H), 1.60 (d, J ϭ 7.2, Me),
1.2Ϫ1.5 (m, 6 H), 0.86 (Me). Ϫ 13C NMR (CDCl3): δ ϭ 72.8
(CHS), 74.0 (CHO), 34.1 (CH2), 31.0 (CH2), 24.2 (CH2), 22.3
(CH2), 13.9 (C-8, CH3), 13.4 (C-1, CH3).
Desulfonation, John Wiley and Sons, Inc. New York, 1968, p.
6Ϫ7.
[11]
F. Asinger, B. Fell, U. Guhr, Chem. Ber. 1967, 100, 448Ϫ455.
[12]
W. A. Thaler, C. duBreuil, J. Polym. Sci. Polym. Chem. Ed.
1984, 22, 3905Ϫ3919.
[13]
E. E. Gilbert, Sulfonation and Related Reactions, Interscience,
New York, 1965, p. 18, 19 and 45.
1
[14]
cis-2,3-Octanesultone (2m): H NMR (CDCl3): δ ϭ 4.88 (m, 1 H,
S. Miron, G. Richter, J. Am. Chem. Soc. 1949, 71, 453Ϫ455.
[15]
L. Bert, C. R. Hebd. Seances Acad. Sci. 1946, 222, 898Ϫ900;
CHS), 4.57 (m, 1 H, CHO), 1.80 (m, 2 H), 1.53 (d, J ϭ 7.4, Me),
1.30 (m, 6 H), 0.87 (Me). Ϫ 13C NMR (CDCl3): δ ϭ 69.8 (CHS),
70.4 (CHO), 31.1 (CH2), 29.6 (CH2), 24.7 (CH2), 22.3 (CH2), 9.2
(C-1, CH3), 13.8 (C-8, CH3).
Chem. Abstr. 1946, 40, 40197.
[16]
H. R. Alul, Ind. Eng. Chem., Prod. Res. Develop. 1971, 10,
358Ϫ360.
[17]
B. H. Bakker, H. Cerfontain, Tetrahedron Lett. 1989, 30,
5451Ϫ5454.
1
[18]
Cyclopentyl Chlorosulfate (5a): H NMR (CDCl3): δ ϭ 5.46 (m, 1
H), 2.11 (m, 2 H), 1.97 (m, 2 H), 1.77 (m, 4 H).
Y. Auger, G. Delesalle, J. C. Fischer, M. Wartel, J. Electroanal.
Chem. 1980, 106, 149Ϫ159.
Eur. J. Org. Chem. 1999, 91Ϫ96
95