1870
N. Ikemoto et al. / Tetrahedron Letters 46 (2005) 1867–1871
25
D
13 (free base): ½aꢁ ꢂ44 (c 0.41, MeOH); 1H NMR
References and notes
(400 MHz, DMSO): d 8.76 (s, 1H), 8.65 (t, 1H), 8.53
(d, 2.3 Hz, 1H), 7.79 (s, 1H), 7.61 (t, 1H), 5.91 (m,
1H), 5.22 (m, 2H), 4.80 (dd, 6.2, 18.6 Hz, 1H), 4.55
(m, 5H), 3.90 (s, 3H+2H), 3.83 (d, 12.4 Hz, 1H), 3.38
(m, 2H), 2.81 (m, 1H), 2.41 (d, 11 Hz, 1H), 2.20 (t,
11 Hz, 1H), 1.12 (s, 3H), 1.08 (s, 3H).
1. Vacca, J. P.; Condra, J. H. Drug Discov. Today 1997, 2,
261.
2. Ghosh, A. K.; Bilcer, G.; Schiltz, G. Synthesis 2001, 2203–
2229.
3. Askin, D. Curr. Opin. Drug Discov. Develop. 1998, 1, 338–
348.
4. Lu, Z.; Raghavan, S.; Bohn, J.; Charest, M.; Stahlhut, M.
W.; Rutkowski, C. A.; Simcoe, A. L.; Olsen, D. B.; Schleif,
W. A.; Carella, A.; Gabryelski, L.; Jin, L.; Lin, J. H.;
Emini, E.; Chapman, K.; Tata, J. R. Bioorg. Med. Chem.
Lett. 2003, 13, 1821–1824.
25
D
14: mp 201 °C; ½aꢁ ꢂ8 (c 0.51, MeOH); 1H NMR
(400 MHz, DMSO): d 1.57 (s, 6H), 2.49–2.51 (m, 2H),
3.00–3.03 (m, 2H), 3.35 (d, 12.6 Hz, 1H), 3.46 (d,
11.0 Hz, 1H), 3.97 (s, 3H), 3.97–4.07 (m, 3H), 7.49–
7.54 (m, 6H), 7.71 (dd, 1.4, 8.5 Hz, 3H), 7.85 (d,
8.5 Hz, 3H), 7.86–7.93 (m, 3H), 7.94–7.97 (m, 3H),
7.99 (s, 1H), 8.05 (t, 2.1 Hz, 1H), 8.1–8.4 (broad, 3H),
8.50 (d, 2.6 Hz, 1H), 8.73 (d, 1.5 Hz, 1H), 8.8–8.9
(broad, 1H), 9.1–9.2 (broad, 1H), 9.29 (t, 6.3 Hz, 1H).
13C NMR (100 MHz, DMSO): d 24.3, 24.7, 43.0, 43.7,
47.1, 56.5, 57.7, 59.3, 123.2, 124.2, 124.7, 124.9 (q,
279 Hz), 126.9, 127.1, 127.3, 127.4, 127.9, 128.0, 128.9,
131.1, 131.8, 132.6, 133.4, 145.4, 146.4, 157.8, 166.4,
167.5.
5. Schock, H. B.; Garsky, V. M.; Kuo, L. C. J. Biol. Chem.
1996, 271, 31957–31963.
6. Tata, J. R.; Chapman, K. T.; Duffy, J. L.; Kevin, N. J.;
Cheng, Y.; Rano, T. A.; Zhang, F.; Huening, T.; Kirk, B.
A.; Lu, Z.; Raghavan, S.; Fleitz, F. J.; Petrillo, D. E.;
Armstrong, J. D., III; Varsolona, R. J.; Askin, D.;
Hoerrner, R. S.; Purick, R. Preparation of c-hydroxy-2-
fluoroalkylaminocarbonyl-1-piperazine-pentanamides as
HIV protease inhibitors. PCT Int. Appl. WO 0138332,
2001.
7. Tata, J. R.; Charest, M.; Lu, Z.; Raghavan, S.; Huening,
T.; Rano, T. Preparation of a-hydroxy-c-[[(carbocyclic-or
heterocyclic-substituted)amino]carbonyl]alkanamides as
HIV protease inhibitors. PCT Int. Appl. WO 0105230,
2001.
8. Tata, J. R.; Raghavan, S.; Lu, Z.; Zhang, F.; Cheng, Y.;
Chang, J.; Kim, R. M.; Bohn, J. M.; Rano, T.; Shen,
D.-M.; Shu, M. Preparation of piperazine pentanamide
HIV protease inhibitors and methods of treating AIDS.
PCT Int. Appl. WO 0296359, 2002.
9. Zhang, F.; Chapman, K. T.; Schleif, W. A.; Olsen, D. B.;
Stahlhut, M.; Rutkowski, C. A.; Kuo, L. C.; Jin, L.; Lin,
J. H.; Emini, E. A.; Tata, J. R. Bioorg. Med. Chem. Lett.
2003, 13, 2573–2576.
17: 1H NMR (400 MHz, CDCl3): d 8.55 (m, 1H), 8.25 (s,
1H), 7.95 (s, 1H), 7.45 (s, 1H), 7.38 (m, 1H), 3.9 (s, 3H);
13C NMR (100 MHz, CDCl3): d 155.7, 151.1, 148.7,
138.0, 137.6, 124.4, 123.0, 115.6, 55.7.
19: 1H NMR (400 MHz, CD3CN): d 7.2 (br s, 2H), 3.93
(q, J = 9.4 Hz, 2H), 2.7–3.7 (m, 7H), 1.38 (s, 3H), 1.23
(s, 3H); 13C NMR (100 MHz, CD3CN) d 168.8, 124.1
(q, J = 279.5 Hz), 121.1 (q, J = 319.5 Hz), 78.9, 55.0,
45.0, 44.6, 41.0 (q, J = 35.7 Hz), 40.4, 24.1, 16.9.
1
10. Gauthier, D. R.; Ikemoto, N.; Fleitz, F. J.; Szumigala, R.
H.; Petrillo, D.; Liu, J.; Armstrong, J. D.; Yehl, P. M.;
Wu, N.; Volante, R. P. Tetrahedron: Asymmetry 2003, 14,
3557–3567.
20: H NMR (500 MHz, CD2Cl2): d 4.61 (m, 1H), 4.45
(m, 1H), 3.7–3.95 (m, 2H), 3.45–3.65 (m, 3H), 3.17 (dt,
J = 11.3, 3.2 Hz, 1H), 3.01 (td, J = 11.3, 2.8 Hz, 1H),
2.65 (s, 3H), 2.64 (s, 3H), 1.45 (s, 3H), 1.28 (s, 3H);
13C NMR (126 MHz, CD2Cl2): d 191.9, 169.4, 124.2
(q, J = 279.9 Hz), 79.5, 57.3, 53.9, 53.8, 42.7, 41.9 (q,
J = 36 Hz), 26.5, 26.4, 24.7, 19.3.
11. Syntheses of compounds containing a N-gem-dimethyl-
methylene-2-oxazolyl or benzoxazolyl group: (a) Wipf, P.;
Miller, C. P. J. Org. Chem. 1993, 58, 3604–3606; (b)
Huang, J.; Haigh, d. S. J. Heterocycl. Chem. 1990, 27,
331–334; (c) Katritzky, A. R.; Aslan, D.; Shcherbakova, I.
V.; Chen, J.; Belyakov, S. A. J. Heterocycl. Chem. 1996,
33, 1107–1114; (d) Villalgordo, J. M.; Vincent, B. R.;
Heimgartner, H. Helv. Chim. Acta 1990, 73, 959–974.
12. Liu, J.; Ikemoto, N.; Petrillo, D.; Armstrong, J. D.
Tetrahedron Lett. 2002, 43, 8223–8226.
1
1: mp 205 °C; H NMR (400 MHz, CD3OD): d 8.50 (d,
1.5 Hz, 1H), 8.25 (d, 2.7 Hz, 1H), 7.70 (s, 2H), 7.32–7.17
(m, 5H), 7.16 (d, J = 7.6 Hz, 1H), 7.09 (m, 1H), 6.86 (m,
1H), 6.40 (d, 8.1 Hz, 1H), 5.17 (d, 4.0 Hz, 1H), 4.84 (s,
4H), 4.21 (br s, 1H), 4.17–3.98 (m, 4H), 3.96 (s, 3H),
3.97–3.75 (m, 3H), 3.40 (br s, 1H), 3.32–3.13 (m, 2H),
3.07 (br s, 1H), 3.03–2.93 (m, 2H), 2.85–2.62 (m, 3H),
1.90 (m, 1H), 1.68 (s, 6H), 1.53 (m, 1H). 13C NMR
(100 MHz, CD3OD): d 177.8, 169.0, 167.5, 158.0,
155.7, 150.1, 140.5, 138.0, 137.9, 130.4, 130.0, 129.8,
129.6, 127.6, 126.6, 125.8 (q, 278 Hz), 125.0, 122.4,
122.0, 117.9, 117.4, 69.4, 66.6, 65.5, 62.2, 59.9, 56.8,
54.0, 49.7, 49.1, 46.1, 45.5, 41.5 (q, 34.9 Hz), 40.5,
38.6, 24.6, 24.3.
13. The silver containing waste stream was forwarded to an
outside vendor for metal recovery.
14. Since bulk commercial NSA was only available with low
purity (ꢀ65–80 wt % and <90 A% purity), novel and
practical purification procedures were devised to upgrade
this acid to the required >99 A% purity. Method 1: Crude
NSA is dissolved in toluene/acetonitrile at 80 °C, the
bottom dark layer is cut, and the top layer containing
the NSA is saturated with water and cooled to crystallize
the NSA hydrate in 98–99 A% purity. Recrystallization
from acetonitrile/toluene affords >99 A% purity (57%
overall recovery). Method 2: The toluene layer after the
cut is extracted with water. The aqueous layer is evapo-
rated and solvent switched to acetonitrile. Toluene is
added and heated to form a clear solution. Seeding with
NSA and cooling generates a slurry, which is filtered,
rinsed with toluene and dried to afford NSA with 99.5 A%
purity (66% recovery).
Acknowledgements
We thank Dr. Tom Novak for HRMS data and
Lisa DiMichele for NMR identification of key
impurities.