Chemistry - An Asian Journal
10.1002/asia.201901805
FULL PAPER
under Ar atmosphere for 12 h. After 12 h, solvent was fully evaporated
and the crude solid obtained was dissolved in minimum amount of
few experiments including CPE, as well as helpful discussions.
We thank the reviewers for insightful comments.
acetonitrile followed by the addition of NH
Further 2 mL of H O was added to precipitate the desired complex. The
dark purple coloured precipitate obtained was washed with diethylether
for further purification (yield 51.3 mg, 74%). 1H NMR (400 MHz, CDCl
δ:9.23 (d, J = 5.50 Hz, 1H), 8.22 (d, J = 7.87 Hz, 1H), 7.84 (d, J = 7.64,
H), 7.80 (m, 1H), 7.73 (d, J = 7.91 Hz, 1H), 7.31 (t, J = 6.48, 1H), 7.20
4 6
PF (3 equiv. of solid crude).
2
2
Keywords: CO reduction • electrocatalysis • cobalt • half-
3
)
sandwich • CO.
1
13
1
(
dd, J = 9.04, 16.97 Hz, 2H), 1.53 (s, 15H). C{ H} NMR (101 MHz,
CDCl ): δ = 156.19, 149.17, 148.67, 141.17, 140.52, 136.34, 126.99,
26.64, 125.65, 124.86, 118.12, 94.78, 29.81, 11.46. HRMS (ESI,
[
1]
For selected recent reviews, see: a) C. Hepburn, E. Adlen, J.
Beddington, E. A. Carter, S. Fuss, N. M. Dowell, J. G. Minx, P. Smith, C.
K. Williams, Nature, 2019, 575, 87-97. b) H. Takeda, C. Cometto, O.
Ishitani, M. Robert, ACS Catal. 2017, 7, 70-88. c) K. E. Dalle, J.
Warnan, J. J. Leung, B. Reuillard, I. S. Karmel, E. Reisner, Chem. Rev.
3
1
+
24 3
positive ion): 516.0345 (calcd 516.0346 for [C22H N CoI] .
Synthesis of Complex 2:
The above-mentioned ligand precursor (22.5 mg, 0.115 mmol) as
prepared during the synthesis of complex 1, was dissolved in dry
acetonitrile in a Schlenk tube. Next, AgOTf (80.9 mg, 0.315 mmol) and
2019, 119, 2752-2875. d) R. Francke, B. Schille, M. Roemelt, Chem.
Rev. 2018, 118, 4631-4701. e) S. Fukuzumi, Y-M. Lee, H. S. Ahn, W.
Nam, Chem. Sci. 2018, 9, 6017-6034. f) J. M. Barlow, J. Y. Yang, ACS
Cent. Sci. 2019, 5, 580-588. g) N. Elgrishi, M. B. Chambers, X. Wang,
M. Fontecave, Chem. Soc. Rev. 2017, 46, 761-796. h) J. Bonin, A.
Maurin, M. Robert, Coord. Chem. Rev. 2017, 334, 184-198. i) C.
Costentin, M. Robert, J-M. Save´ant, Chem. Soc. Rev. 2013, 42, 2423-
2
Cp*Co(CO)I (50.0 mg, 0.105 mmol) were mixed to it under argon
atmosphere. After 5-10 min, a yellow-colored precipitate appeared. At the
same time, the solution changed to red. The reaction mixture was kept
for stirring at room temperature for next 24 h. After 24 h, the reaction
mixture was filtered through Celite, and all volatiles were removed under
reduced pressure. The complex was obtained as a brick-red solid by
1
precipitation from CH
MHz, CD
(
3
CN and Et
2
O (yield 49.7 mg, 65%). H NMR (400
2436. j) M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114,
1709−1742. k) J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev.
2014, 43, 631−675. l) E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M.
3
CN) δ: 9.38 (d, J = 5.5 Hz, 1H), 8.55 (d, J = 7.9 Hz, 1H), 8.15
TD, J = 7.8, 1.2 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.1 Hz,
1H), 7.78 (dd, J = 9.6, 3.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.34 (t, J =
13
1
Smieja, Chem. Soc. Rev. 2009, 38, 89−99. m) A. M. Appel, J. E.
Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G.
Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C.
H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H.
Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013,
113, 6621−6658. n) J. Schneider, H. Jia, J. T. Muckerman, E. Fujita,
Chem. Soc. Rev. 2012, 41, 2036−2051. o) D. G. Nocera, Acc. Chem.
Res. 2017, 50, 616-619.
3
7.6 Hz, 1H), 1.96 (s, 3H), 1.30 (s, 15H). C{ H} NMR (101 MHz, CD CN):
δ = 206.43, 154.88, 153.10, 152.80, 145.37, 143.07, 140.86, 126.57,
22.98, 122.13, 119.69, 118.54, 115.84, 97.97, 29.74, 9.13.HRMS (ESI,
1
+
24 3 3 3
positive ion): 538.08 (calcd 538.0817 for [C23H F N O SCo] .
Synthesis of Complex 2-Me:
Step-1: Synthesis of ligand precursor: The ligand precursor was
synthesized by following the reported procedure.[13] 1H NMR (500 MHz,
DMSO-d6) δ: 8.76 (d, J = 4.28 Hz 1H), 8.31 (d, J = 7.90 Hz 1H), 8.01 (td,
J = 1.77, 7.78 Hz 1H), 7.73 (d, J = 7.92 Hz 1H), 7.65 (d, J= 8.07 Hz 1H),
7
.52 (ddd, J = 1.04, 4.81, 7.50 Hz 1H), 7.34 (m, 1H), 7.28 (m, 1H), 4.24
[2]
For selected recent examples, see: a) S. L. Hooe, J. M. Dressel, D. A.
Dickie, C. W. Machan, ACS Catal. 2020, 10, 1146-1151. b) Y. Guo, W.
Shi, H. Yang, Q. He, Z. Zeng, J-y. Ye, X. He, R. Huang, C. Wang, W.
Lin, J. Am. Chem. Soc. 2019, 141, 17875−17883. c) A. Ogawa, K.
Oohora, W. Gu, T. Hayashi, Chem. Commun. 2019, 55, 493-496. d) W.
Nie, C. C. L. McCrory, Chem. Commun. 2018, 54, 1579-1582. e) A.
Chapovetsky, T. H. Do, R. Haiges, M. K. Takase, S. C. Marinescu, J.
Am. Chem. Soc. 2016, 138, 5765-5768. f) F. Franco, M. F. Pinto, B.
Royo, J. Lloret-Fillol, Angew. Chem. Int. Ed. 2018, 57, 4603–4606. g) A.
Taheri, E. J. Thompson, J. C. Fettinger, L. A. Berben, ACS Catal. 2015,
(s, 3H). Step-2: Synthesis of complex 2-Me: Complex 2-Me was
1
synthesized by following the previously described procedure. H NMR
500 MHz, CD CN) δ:9.59 (d, J= 5.45 Hz 1H), 8.52 (d, J= 8.08 Hz 1H),
.41 (td, J= 1.32, 7.92 Hz 1H), 8.10 (d, J= 9.21 Hz 1H), 8.00 (m, 1H),
(
3
8
7
13
1
.89 (d, J= 9.34 Hz 1H), 7.69 (m, 2H), 4.29 (s, 3H), 1.32 (s, 15H). C{ H}
CN) δ = 157.18, 151.73, 149.55, 142.47, 139.91,
39.29, 129.28, 127.32, 126.48, 126.27, 118.89, 114.09, 100.06, 34.04,
0.38. HRMS (ESI, positive ion): 552.096 (calcd 552.097 for
NMR (101 MHz, CD
1
1
3
+
24 26 3 3 3
[C H F N O SCo] .
5, 7140−7151. h) A. Nakada, O. Ishitani, ACS Catal. 2018, 8, 354−363.
Procedure for electrochemistry and electrocatalysis
i) I. Azcarate, C. Costentin, M. Robert, J-M. Save´ant, J. Am. Chem.
Soc. 2016, 138, 16639−16644. j) H. Kumagai, T. Nishikawa, H. Koizumi,
T. Yatsu, G. Sahara, Y. Yamazaki, Y. Tamaki, O. Ishitani, Chem. Sci.
2019, 10, 1597–1606. k) B. Mondal, P. Sen, A. Rana, D. Saha, P. Das,
A. Dey, ACS Catal. 2019, 9, 3895−3899. l) M. Abdinejad, A.
Seifitokaldani, C. Dao, E. H. Sargent, X-a. Zhang, H. B. Kraatz, ACS
Appl. Energy Mater. 2019, 2, 1330−1335. m) S. Mou, T. Wu, J. Xie, Y.
Zhang, L. Ji, H. Huang, T. Wang, Y. Luo, X. Xiong, B. Tang, X. Sun,
Adv. Mater. 2019, 31, 1903499. n) L. Ji, L. Chang, Y. Zhang, S. Mou, T.
Wang, Y. Luo, Z. Wang, X. Sun, ACS Catal. 2019, 9, 9721−9725. o) L.
Ji, L. Li, X. Ji, Y. Zhang, S. Mou, T. Wu, Q. Liu, B. Li, X. Zhu, Y. Luo, X.
Shi, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2020, 59, 758 –762. p)
S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W(D). Lou, Angew.
Chem. Int. Ed. 2019, 58, 8499 –8503.
All the electrochemical experiments were performed using CHI 620E
Electrochemical Analyzer. The electrochemical setup contained
customized four-neck electrochemical cell, glassy carbon electrode (3
mm diameter) as working electrode, Pt wire as counter electrode and
Ag/AgCl (saturated KCl) as reference electrode. The electrochemical cell
a
was evacuated and filled with Ar or CO
experiments. A 0.1 M Bu NPF
4 6
2
gas before respective
solution was used as supporting
electrolyte in dry acetonitrile (or water/acetonitrile as mentioned). The
solutions were saturated with CO gas (or Ar gas) for 90 min prior to each
n
2
experiment. The glassy carbon electrode was polished before each CV
run. For controlled potential electrolysis (CPE) experiment, a customized
four-neck two-compartment electrochemical cell was used. The gas
evolved in bulk electrolysis experiment was detected by using a gas
chromatograph (GC) instrument (7890B) equipped with thermal
conductivity detector (TCD).
[
3]
4]
For selected reviews, see: a) K. Sordakis, C. Tang, L. K. Vogt, H.
Junge, P. J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118,
372-433. b) J. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2,
188−195. c) D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc.
Acknowledgements
Rev. 2016, 45, 3954−3988.
[
Q. Zhang, J. Kang, Y. Wang, ChemCatChem 2010, 2, 1030-1058.
L. Chen, Z. Guo, X-G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabꢀhꢁre-
Mallart, K-C. Lau, T-C. Lau, M. Robert, J. Am. Chem. Soc. 2015, 137,
This work was financially supported by DST-SERB (grant nos.
EMR/2016/003002 and SERB/EMR-II/080063) and IISER
Bhopal. I.K.P. thanks DST-SERB for NPDF and A.K. thanks
IISER Bhopal for IPhD fellowship. The authors sincerely thank
Professor Abhishek Dey (Indian Association for the Cultivation of
Science, Kolkata, India) and his group for help in conducting a
[5]
10918−10921.
[
6]
7]
S. Dey, M. E. Ahmed, A. Dey, Inorg. Chem. 2018, 57, 5939-5947.
S. Roy, B. Sharma, J. Pecaut, P. Simon, M. Fontecave, P. D. Tran,
Derat, V. Artero, J. Am. Chem. Soc. 2017, 139, 3685−3696.
[
́E.
This article is protected by copyright. All rights reserved.