Paper
Organic & Biomolecular Chemistry
and the ligand without modifying the coumarin itself (iv) the
effect of the triazole moiety can be either positive or negative
depending on the hCA isoform. Although a clear multivalent
effect could not be observed (if calculated on a “per-coumarin”
basis), the multivalent compounds were always better inhibi-
tors than the monovalent controls. Therefore, we believe that
the multivalent inhibition of CAs is possible and that, as for
the well-studied glycosidase family, the level of inhibition
potency can be improved by optimizing the length and rigidity
of the linker, the core scaffold itself and the substitution
pattern on the coumarin derivative. We also believe that the
field of multienzyme inhibition should indeed find biomedical
applications especially if the enzymes are extracellular, as for
the tumor-associated carbonic anhydrases, or if they are mem-
brane-anchored and exposed to the external cellular medium
such as the viral neuraminidases.27
3 (a) R. J. Pieters, Org. Biomol. Chem., 2009, 7, 2013;
(b) M. Lahmann, Top. Curr. Chem., 2009, 288, 17;
(c) Y. M. Chabre and R. Roy, Adv. Carbohydr. Chem.
Biochem., 2010, 63, 165; (d) M. Sanchez-Navarro, A. Munoz,
B. M. Illescas, J. Rojo and N. Martin, Chem. – Eur. J., 2011,
17, 766; (e) J.-L. Reymond and T. Darbre, Org. Biomol.
Chem., 2012, 10, 1483; (f) X. Zeng, C. A. Andrade,
M. D. Oliveira and X. L. Sun, Anal. Bioanal. Chem., 2012,
402, 3161; (g) J. J.-B. A. Bernardi, A. Casnati, C. De Castro,
T. Darbre, F. Fieschi, J. Finne, H. Funken, K.-E. Jaeger,
M. Lahmann, T. K. Lindhorst, M. Marradi, P. Messner,
A. Molinaro, P. V. Murphy, C. Nativi, S. Oscarson,
S. Penadés, F. Peri, R. J. Pieters, O. Renaudet,
J.-L. Reymond, B. Richichi, J. Rojo, F. Sansone, C. Schäffer,
W. B. Turnbull, T. Velasco-Torrijos, S. Vidal, S. P. Vincent,
T. Wennekes, H. Zuilhof and A. Imberty, Chem. Soc. Rev.,
2013, 42, 4709; (h) A. K. Adak, H.-J. Lin and C.-C. Lin, Org.
Biomol. Chem., 2014, 12, 5563; (i) S. Cecioni, A. Imberty and
S. Vidal, Chem. Rev., 2015, 115, 525.
Experimental
Synthetic procedures and analytical data: see ESI†
4 (a) D. Deniaud, K. Julienne and S. G. Gouin, Org. Biomol.
Chem., 2011, 9, 966; (b) R. R. O. Renaudet, Chem. Soc. Rev.,
2013, 42, 4515.
CA inhibition. A stopped-flow instrument (SX.18MV-R
Applied Photophysics model) was used for assaying the CA-
catalyzed CO2 hydration activity.25 Inhibitor and enzyme were
preincubated for 15 min for allowing the complete formation
of the enzyme-inhibitor adduct. IC50 values were obtained
from dose response curves working at eight different concen-
trations of test compound (from 0.01 nM to 50 μM), by fitting
linear least squares methods, the obtained values representing
the mean of at least three different determinations. The inhi-
bition constants (KI) were derived from the IC50 values by
using the Cheng–Prusoff equation, as follows: KI = IC50/(1 +
[S]/Km) where [S] represents the CO2 concentration at which
the measurement was carried out, and Km the concentration of
substrate at which the enzyme activity is at half maximal. All
enzymes used were recombinant, produced in E. coli as
reported earlier.28 The concentrations of enzymes used in the
assay varied between 8.4 nM and 12.8 nM.
5 (a) A. Imberty, Y. M. Chabre and R. Roy, Chem. – Eur. J.,
2008, 14, 7490; (b) M. Durka, K. Buffet, J. Iehl, M. Holler,
J. F. Nierengarten, J. Taganna, J. Bouckaert and
S. P. Vincent, Chem. Commun., 2011, 47, 1321;
(c) M. Hartmann and T. K. Lindhorst, Eur. J. Org. Chem.,
2011, 3583; (d) M. Hartmann, H. Papavlassopoulos,
V.
Chandrasekaran,
C.
Grabosch,
F.
Beiroth,
T. K. Lindhorst and C. Rohl, FEBS Lett., 2012, 586, 1459;
(e) I. Nierengarten, K. Buffet, M. Holler, S. P. Vincent and
J.-F. Nierengarten, Tetrahedron Lett., 2013, 54, 2398;
(f) A. Kouki, R. J. Pieters, U. J. Nilsson, V. Loimaranta,
J. Finne and S. Haataja, Biology, 2013, 2, 918;
(g) J. Luczkowiak, A. Munoz, M. Sanchez-Navarro,
R. Ribeiro-Viana, A. Ginieis, B. M. Illescas, N. Martin,
R. Delgado and J. Rojo, Biomacromolecules, 2013, 14, 431;
(h) A. M. Boukerb, A. Rousset, N. Galanos, J. B. Mear,
M. Thepaut, T. Grandjean, E. Gillon, S. Cecioni,
C. Abderrahmen, K. Faure, D. Redelberger, E. Kipnis,
R. Dessein, S. Havet, B. Darblade, S. E. Matthews, S. de
Bentzmann, B. Guery, B. Cournoyer, A. Imberty and
S. Vidal, J. Med. Chem., 2014, 57, 10275.
Acknowledgements
We thank the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme “DyNano”
FP7/2007-2013/under REA grant agreement no. 289033 for the
financial support.
6 J. Diot, M. I. Garcia-Moreno, S. G. Gouin, C. Ortiz Mellet,
K. Haupt and J. Kovensky, Org. Biomol. Chem., 2009, 7, 357.
7 P. Compain, C. Decroocq, J. Iehl, M. Holler, D. Hazelard,
T. Mena Barragan, C. Ortiz Mellet and J. F. Nierengarten,
Angew. Chem., Int. Ed., 2010, 49, 5753.
8 M. Durka, K. Buffet, J. Iehl, M. Holler, J. F. Nierengarten
and S. P. Vincent, Chem. – Eur. J., 2012, 18, 641.
9 Y. Brissonnet, S. Ladeveze, D. Teze, E. Fabre, D. Deniaud,
F. Daligault, C. Tellier, S. Sestak, M. Remaud-Simeon,
G. Potocki-Veronese and S. G. Gouin, Bioconjugate Chem.,
2015, 26, 766.
References
1 C. R. A. Varki and J. D. Esko, et al., Essentials of Glycobio-
logy, NY, 2nd edn, 2009.
2 C. Fasting, C. A. Schalley, M. Weber, O. Seitz, S. Hecht,
B. Koksch, J. Dernedde, C. Graf, E. W. Knapp and R. Haag, 10 (a) A. J. Cagnoni, O. Varela, S. G. Gouin, J. Kovensky and
Angew. Chem., Int. Ed., 2012, 51, 10472.
M. L. Uhrig, J. Org. Chem., 2011, 76, 3064; (b) C. Decroocq,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015