Communication
Green Chemistry
In summary, we have developed a metal-free and base-free
carbonylation reaction by photoredox catalysis with green
light. Mechanistic studies support the sequential operation of
SET reduction, carbonylation, and back electron transfer to
give acylium cations. Aryl ketones can be prepared from arene
diazonium salts, CO, and (hetero)arenes at room temperature
under irradiation with visible light. Most importantly, simple
and readily available Eosin Y emerges as an efficient catalyst,
rather than a metal catalyst, which is often expensive and is
required to be completely removed from products, especially
in the synthesis of pharmaceutical compounds. Further inves-
tigations of the mechanism of the reaction and its application
are ongoing in our laboratory.
(e) E. L. Tyson, Z. L. Niemeyer and T. P. Yoon, J. Org. Chem.,
2014, 79, 1427; (f) J. Xuan, Z. Feng, S. Duan and W. Xiao,
RSC Adv., 2012, 2, 4065; (g) J. Xuan, X. Xia, T. Zeng, Z. Feng,
J. Chen, L. Lu and W. Xiao, Angew. Chem., Int. Ed., 2014, 53,
5653; (h) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan
and A. Lei, Angew. Chem., Int. Ed., 2014, 53, 502;
(i) D. P. Hari and B. König, Chem. Commun., 2014, 50, 6688;
( j) A. K. Yadav, V. P. Srivastava and L. D. S. Yadav, New
J. Chem., 2013, 37, 4119; (k) T. Xiao, L. Li, G. Lin, Q. Wang,
P. Zhang, Z. Mao and L. Zhou, Green Chem., 2014, 16, 2418;
(l) M. N. Hopkinson, B. Sahoo, J. Li and F. Glorius, Chem. –
Eur. J., 2014, 20, 3874; (m) C. Yu, N. Iqbal, S. Park and
E. J. Cho, Chem. Commun., 2014, 50, 12884; (n) J. C. Tellis,
D. N. Primer and G. A. Molander, Science, 2014, 345, 433;
(o) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle
and D. W. C. MacMillan, Science, 2014, 345, 437.
We are grateful for the financial support from The Edu-
cational Bureau of Yunnan Province (2010Y431) and the State
Ethnic Affairs Commission (12YNZ05).
6 (a) D. P. Hari, P. Schroll and B. König, J. Am. Chem. Soc.,
2012, 134, 2958; (b) M. Majek and A. J. Wangelin, Angew.
Chem., Int. Ed., 2015, 54, 2270; (c) W. Guo, L. Lu, Y. Wang,
Y. Wang, J. Chen and W. Xiao, Angew. Chem., Int. Ed., 2015,
54, 2265; (d) T. Hering, D. P. Hari and B. König, J. Org.
Chem., 2012, 77, 10347; (e) F. P. Crisóstomo, T. Martin and
R. Carrillo, Angew. Chem., Int. Ed., 2014, 53, 2181.
Notes and references
1 (a) M. Li, C. Wang and H. Ge, Org. Lett., 2011, 13, 2062;
(b) B. Skillinghaug, C. Sköld, J. Rydfjord, F. Svensson,
M. Behrends, J. Sävmarker, P. J. R. Sjöberg and M. Larhed,
J. Org. Chem., 2014, 79, 12018; (c) L. Gu, J. Liu and
H. Zhang, Chin. J. Chem., 2014, 32, 1267; (d) Q. Zhou,
S. Wei and W. Han, J. Org. Chem., 2014, 79, 1454.
7 L. Gu, C. Jin, J. Liu, H. Ding and B. Fan, Chem. Commun.,
2014, 50, 4643.
8 For recent selected examples on CO as an acylating reagent,
see: (a) P. Xie, Y. Xie, B. Qian, H. Zhou, C. Xia and
H. Huang, J. Am. Chem. Soc., 2012, 134, 9902; (b) H. Zhang,
D. Liu, C. Chen, C. Liu and A. Lei, Chem. – Eur. J., 2011, 17,
9581; (c) J. Ferguson, F. Zeng and H. Alper, Org. Lett., 2012,
14, 5602; (d) L. Wang, Y. Wang, C. Liu and A. Lei, Angew.
Chem., Int. Ed., 2014, 53, 5657; (e) W. Li, C. Liu, H. Zhang,
K. Ye, G. Zhang, W. Zhang, Z. Duan, S. You and A. Lei,
Angew. Chem., Int. Ed., 2014, 53, 2443; (f) H. Zhang, R. Shi,
A. Ding, L. Lu, B. Chen and A. Lei, Angew. Chem., Int. Ed.,
2012, 51, 12542; (g) W. Li, Z. Duan, X. Zhang, H. Zhang,
M. Wang, R. Jiang, H. Zeng, C. Liu and A. Lei, Angew.
Chem., Int. Ed., 2015, 54, 1893; (h) S. Luo, F. Luo, X. Zhang
and Z. Shi, Angew. Chem., Int. Ed., 2013, 52, 10598;
(i) N. Hasegawa, K. Shibata, V. Charra, S. Inoue,
Y. Fukumoto and N. Chatani, Tetrahedron, 2013, 69, 4466;
( j) N. Hasegawa, V. Charra, S. Inoue, Y. Fukumoto and
N. Chatani, J. Am. Chem. Soc., 2011, 133, 8070;
(k) K. Inamoto, J. Kadokawa and Y. Kondo, Org. Lett., 2013,
15, 3962; (l) Z. Liang, S. D. Friis and T. Skrydstrup, Chem.
Commun., 2015, 51, 1870; (m) E. J. Moore, W. R. Pretzer,
T. J. Oconnell, J. Harris, L. Labounty, L. Chou and
S. S. Grimmer, J. Am. Chem. Soc., 1992, 114, 5888;
(n) L. Åkerbladh, P. Nordeman, M. Wejdemar, L. R. Odell
and M. Larhed, J. Org. Chem., 2015, 80, 1464.
2 For selected examples for the synthesis of aryl ketones, see:
(a) L. Gu and H. Zhang, RSC Adv., 2015, 5, 690; (b) X. Zhu,
J. Niu, F. Zhang, J. Zhou, X. Li and J. Ma, New J. Chem.,
2014, 38, 4622; (c) A. J. Wommack, D. C. Moebius,
A. L. Travis and J. S. Kingsbury, Org. Lett., 2009, 11, 3202;
(d) L. Gu, J. Liu, L. Zhang, Y. Xiong and R. Wang, Chin.
Chem. Lett., 2014, 25, 90; (e) D. Xing, B. Guan, G. Cai,
Z. Fang, L. Yang and Z. Shi, Org. Lett., 2006, 8, 693;
(f) C. A. Loeschorn, M. Nakajima, P. J. McCloskey and
J. P. Anselme, J. Org. Chem., 1983, 48, 4407; (g) L. Gu,
C. Jin, H. Zhang and L. Zhang, J. Org. Chem., 2014, 79,
8453; (h) N. Wan, Y. Hui, Z. Xie and J. Wang, Chin. J. Chem.,
2012, 30, 311.
3 X. Wu, H. Neumann and M. Beller, ChemSusChem, 2013, 6,
229.
4 For selected reviews on visible-light photoredox catalysis,
see: (a) J. Xuan and W. Xiao, Angew. Chem., Int. Ed., 2012, 51,
6828; (b) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem.,
2010, 2, 527; (c) C. K. Prier, D. A. Rankic and
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(d) K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 9785; (e) L. Shi
and W. Xia, Chem. Soc. Rev., 2012, 41, 7687; (f) J. W. Tucker
and C. R. J. Stephenson, J. Org. Chem., 2012, 77, 1617.
5 For recent selected examples for visible-light photoredox
catalysts, see: (a) H. Jiang, Y. Cheng, R. Wang, Y. Zhang
and S. Yu, Chem. Commun., 2014, 50, 6164; (b) Y. Xu and
9 T. Kawamoto, T. Okada, D. P. Curran and I. Ryu, Org. Lett.,
2013, 15, 2144.
W. Zhang, ChemCatChem, 2013, 5, 2343; (c) G. Deng, 10 B. Sahoo, M. N. Hopkinson and F. Glorius, J. Am. Chem.
Z. Wang, J. Xia, P. Qian, R. Song, M. Hu, L. Gong and J. Li, Soc., 2013, 135, 5505.
Angew. Chem., Int. Ed., 2013, 52, 1535; (d) J. Xia, G. Deng, 11 D. P. Hari and B. König, Angew. Chem., Int. Ed., 2013, 52,
M. Zhou, W. Liu, P. Xie and J. Li, Synlett, 2012, 2707; 4734.
Green Chem.
This journal is © The Royal Society of Chemistry 2015