J. Chil. Chem. Soc., 57, Nº 2 (2012)
reaction time 2.5, 3 and 2.5 h in respectively (Table 2, entries 3e-3g). The
reaction of 2-aminophenol coupled with 3-thienyl, 4-pyridyl and 1-naphthyl
benzaldehyde produces the corresponding products in 91%, 93% and 90% yield
in 1.5 h, respectively (Table 2, entries 3h-3j). The reaction of 2-aminophenol
coupled with ethyl, butylaldehyde produces the corresponding products in
94%, and 94% yield in 1.5 h, respectively (Table 2, entries 3k-3l).
Hz, 1H, Ar–H), 7.58 (t, J = 7.4 Hz, 1H, Ar–H), 7.44 (s, 1H, Ar–H), 7.37–7.32
(m, 2H, Ar–H); 13C NMR (CDCl , 100 MHz, ppm): δ 159.7, 150.3, 141.9,
129.2, 128.0, 126.9, 126.6, 124.9,3124.5, 119.9, 110.4; MS (70 eV, EI): m/z
(%): 201 (M+).
2-(Pyridine-4-yl)benzoxazole (3i): 1H NMR (CDCl3, 400 MHz, ppm): δ
8.79 (d, J = 7.9 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H, Ar–H), 7.81 (t, J = 7.5 Hz,
1H, Ar–H), 7.62 (t, J = 7.3 Hz, 1H, Ar–H), 7.42–7.35 (m, 2H); 13C NMR
(CDCl , 100 MHz, ppm): δ 160.5, 150.7, 150.6, 141.6, 134.2, 126.2, 125.0,
120.9, 3120.6, 110.8; MS (70 eV, EI): m/z (%): 197 (M+1).
Table 2: Preparation of various benzoxazoles in the presence of Ni-SiO2
in EtOH at room temperaturea.
2-(Naphthalene-1-yl)benzoxazole (3j): 1H NMR (CDCl , 400 MHz,
ppm): δ 9.54 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 8.2 Hz, 1H, Ar–H), 83.03 (d, J = 8.4
Hz, 1H, Ar–H), 7.97 (t, J = 7.7 Hz, 2H, Ar–H), 7.76 (t, J = 7.2 Hz, 1H, Ar–H),
7.69–7.58 (m, 3H, Ar–H), 7.45–7.44 (m, 2H, Ar–H); 13C NMR (CDCl3, 100
MHz, ppm): δ 162.7, 150.1, 142.3, 133.9, 132.2, 130.6, 129.2, 128.6, 127.8,
126.4, 126.3, 125.2, 124.8, 124.4, 123.5, 120.2, 110.4; MS (70 eV, EI): m/z
(%): 246 (M+1).
Entry
3a
3b
3c
R
Time (hour)
Yield (%)
3,4-MeC6H3
4-MeC6H4
4-MeOC6H4
H
1.5
1.5
1.5
1.5
2.5
3.0
2.5
1.5
1.5
98
96
94
93
89
86
88
91
93
2-Ethylbenzoxazole (3k): 1H NMR (CDCl3, 400 MHz, ppm): δ 7.60 (d, J
= 7.6 Hz, 1H, Ar–H), 7.42 (d, J = 7.2 Hz, 1H, Ar–H), 7.23 (t, J = 8.3 Hz, 2H,
Ar–H), 2.93–2.85 (q, J = 7.3 Hz, 2H, CH2), 1.40–1.19 (t, J = 7.63 Hz, 3H, CH3);
13C NMR (CDCl , 100 MHz, ppm): δ 167.4, 150.9, 141.5, 124.6, 124.2, 119.7,
110.4, 22.4, 11.13; MS (70 eV, EI): m/z (%): 148 (M+1).
3d
3e
4-FC6H4
4-CF3C6H4
4-ClC6H4
3-thienyl
4-pyridyl
3f
3g
3h
3i
2-Butylbenzoxazole (3l): 1H NMR (CDCl3, 400 MHz, ppm): δ 7.67 (d, J
= 7.8 Hz, 1H, Ar–H), 7.47 (d, J = 7.5 Hz, 1H, Ar–H), 7.29 (t, J = 8.3 Hz, 2H,
Ar–H), 2.93 (t, J = 7.6 Hz, 2H, CH2) 1.89–1.81 (m, 2H, CH2), 1.46–1.40 (m,
2H, CH2), 0.97 (t, J = 7.6 Hz, 3H, CH3); 13C NMR (CDCl , 100 MHz): δ 167.6,
150.9, 141.6, 124.6, 124.2, 119.7, 110.5, 29.0, 28.6, 223.5, 13.9; MS (70 eV,
EI): m/z (%): 176 (M+1).
3j
3k
3l
1-naphthyl
ethyl
butyl
1.5
1.5
1.5
90
94
94
CONCLUSION
a Reaction conditions: 2-aminophenol (1.5 mmol), substituted aldehyde (1
mmol), Ni-SiO2 (20 mol%), room temperature, EtOH.
In conclusion, we have developed a novel and highly efficient method for
the synthesis of benzoxazoles by treatment of 2-aminophenol and substituted
aldehyde in the presence of Ni supported silica as an effective Lewis acid.
The significant advantages of this methodology are good yields, short reaction
times, a simple workup procedure, and easy preparation and handling of the
catalyst. This methodology may find widespread uses in organic synthesis for
preparation of the benzoxazoles.
1
2-(3,4-Dimethylphenyl)benzoxazole (3a): H NMR (CDCl3, 400 MHz,
ppm): δ 8.10 (d, J = 8.1 Hz, 2H, Ar–H), 7.75 (t, J = 7.6 Hz, 1H, Ar–H), 7.57 (t,
J = 7.5 Hz, 1H, Ar–H), 7.36–7.24 (m, 3H, Ar–H), 2.40 (s, 6H, CH ); 13C NMR
(CDCl , 100 MHz, ppm): δ 163.0, 150.2, 141.6, 140.9, 132.5, 1330.9, 128.4,
125.7, 3124.4, 124.6, 121.6, 119.6, 110.4, 20.1, 18.9; MS (70 eV, EI): m/z (%):
224 (M+1).
2-P-tolylbenzoxazole (3b): 1H NMR (CDCl3, 400 MHz, ppm): δ 8.15 (d,
J = 8 Hz, 2H, Ar–H), 7.79 (t, J = 7.7 Hz, 1H, Ar–H), 7.57 (t, J = 7.6 Hz, 1H,
Ar–H), 7.36–7.30 (m, 4H, Ar–H), 2.42 (s, 3H, CH3); 13C NMR (CDCl3, 100
MHz, ppm): δ 163.2, 150.6, 142.1, 141.9, 129.5, 127.5, 124.8, 124.4, 124.3,
119.8, 110.4, 21.5; MS (70 eV, EI): m/z (%): 209 (M+).
ACKNOWLEDGEMENTS
The authors are thankful to the authorities of School of Chemistry,
University of KwaZulu-Natal, Westville campus, Durban, South Africa for the
facilities and encouragement.
2-(4-Methoxyphenyl)benzoxazole (3c): 1H NMR (CDCl3, 400 MHz,
ppm): δ 8.20 (d, J = 9.2 Hz, 2H, Ar–H), 7.76 (t, J = 7.8 Hz, 1H, Ar–H), 7.56
(t, J = 7.5 Hz, 1H, Ar–H), 7.36–7.29 (m, 2H, Ar–H), 7.03 (d, J = 8.8 Hz, 2H,
Ar–H), 3.88 (s, 3H, OCH3); 13C NMR (CDCl , 100 MHz, ppm): δ 163.1, 162.3,
150.6, 142.2, 129.3, 124.6, 124.4, 119.7, 119.36, 114.3, 110.3, 55.4; MS (70 eV,
EI): m/z (%): 226 (M+1).
REFERENCES
1. R. D. Viirre, G. Evindar, R. A. Batey, Journal of Organic Chemistry, 73,
3452, (2008).
2. G. Altenhoff, F. Glorius, Advanced Synthesis & Catalysis, 346, 1661,
(2004).
1
2-Phenylbenzoxazole (3d): H NMR (CDCl3, 400 MHz, ppm): δ 8.29–
3. G. Evindar, R. A. Batey, Journal of Organic Chemistry, 71, 1802, (2006).
4. N. Barbero, M. Carril, R. SanMartin, E. Domínguez, Tetrahedron, 63,
10425, (2007).
5. M. Terashima, M. Ishii, Y. Kanaoka, Synthesis, 484, (1982).
6. K. H. Park, K. Jun, S. R. Shin, S. W. Oh, Tetrahedron Letters, 37, 8869,
(1996).
7. R. S. Varma, R. K. Saini, O. Prakash, Tetrahedron Letters, 38, 2621,
(1997).
8. J. Chang, K. Zhao, S. Pan, Tetrahedron Letters, 43, 951, (2002).
9. C. Praveen, K. H. Kumar, D. Muralidharan, P. T. Perumal, Tetrahedron,
64, 2369, (2008).
8.26 (m, 2H, Ar–H), 7.81 (t, J = 7.7 Hz, 1H, Ar–H), 7.60–7.51 (m, 4H, Ar–H),
7.38–7.34 (m, 2H, Ar–H); 13C NMR (CDCl , 100 MHz, ppm): δ 162.9, 150.7,
142.0, 131.4, 128.8, 127.5, 127.1, 125.0, 1234.5, 119.9, 110.5; MS (70 eV, EI):
m/z (%): 196 (M+1).
2-(4-Fluorophenyl)benzoxazole (3e): 1H NMR (CDCl3, 400 MHz, ppm):
δ 8.26 (d, J = 8.2, 2H, Ar–H), 7.78 (t, J = 7.9 Hz, 1H, Ar–H), 7.57 (t, J = 7.4
Hz, 1H, Ar–H), 7.36 (d, J = 8.1 Hz, 2H, Ar–H), 7.21 (d, J = 7.9 Hz, 2H, Ar–H);
13C NMR (CDCl3, 100 MHz, ppm): δ 164.7, 162.0, 150.7, 141.9, 129.8, 129.7,
125.0, 124.6, 123.4, 119.9, 116.1, 115.9, 110.5; MS (70 eV, EI): m/z (%): 214
(M+1).
1
2-(4-(Trifluoromethyl)phenyl)benzoxazole (3f): H NMR (CDCl3, 400
10. G. J. Ten Brink, I. W. C. E. Arends, R. A. Sheldon, Chemical Reviews,
104, 4105, (2004).
11. M. Beller, Advanced Synthesis & Catalysis, 346, 107, (2004).
12. Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hayashi, Organic Letters,
5, 3713, (2003).
13. Y. X. Chen, L. F. Qian, W. Zhang, B. Han, Angewandte Chemie
International Edition, 47, 9330, (2008).
14. A. Rahman, S. B. Jonnalagadda, Catalysis Letters, 123, 264, (2008).
15. A. Rahman, V. S. R. R. Pullabhotla, S. B. Jonnalagadda, Catalysis
Communications, 9, 2417, (2008).
MHz, ppm): δ 8.55 (d, J = 8.3 Hz, 1H, Ar–H), 8.45 (d, J = 8.2 Hz, 1H, Ar–
H), 7.83 (t, J = 7.8 Hz, 2H, Ar–H), 7.69–7.59 (m, 2H, Ar–H), 7.44–7.37 (m,
2H, Ar–H); 13C NMR (CDCl3, 100 MHz, ppm): δ 161.5, 150.8, 141.9, 131.8,
130.6, 129.5, 128.0, 127.9, 125.7, 124.9, 124.5 (J = 4 Hz), 120.3, 110.7; MS
(70 eV, EI): m/z (%): 263 (M+1).
2-(4-(Chlorophenyl)benzoxazole (3g): 1H NMR (CDCl3, 400 MHz,
ppm): δ 8.17 (d, J = 8.1 Hz, 2H, Ar–H), 7.79 (t, J = 7.5 Hz, 1H, Ar–H), 7.54 (t,
J = 7.2 Hz, 1H, Ar–H), 7.49 (d, J =7.3 Hz, 2H, Ar–H), 7.37 (d, J = 7.4 Hz, 2H,
Ar–H); 13C NMR (CDCl3, 100 MHz, ppm). δ 161.9, 150.7, 141.9, 137.6, 129.2,
128.7, 125.6, 125.2, 124.6, 120.0, 110.5; MS (70 eV, EI): m/z (%): 230 (M+1).
1
2-(Thiophen-3-yl)benzoxazole (3h): H NMR (CDCl3, 400 MHz, ppm):
δ 8.20 (dd, J = 2.8, 1.0 Hz, 1H), 7.80 (dd, J = 4.8, 1.0 Hz, 1H), 7.78 (t, J = 7.8
1100