244
J.-F. Cai et al. / Journal of Molecular Catalysis B: Enzymatic 68 (2011) 240–244
biocatalyst. The enantioselectivities up to 83% ee and yields up
to 90% were achieved. The reaction conditions including organic
solvents, water content, temperature, molar ratio of substrates
and enzyme loading were optimized. Lipozyme TLIM can catalyze
the biotransformation of a wide-range of substrates in DMSO in
the presence of water under mild reaction conditions. The spe-
cific catalytic effect of Lipozyme TLIM was demonstrated by the
control experiments. This asymmetric Michael addition activity of
Lipozyme TLIM provided a novel case of unnatural activities of
existing enzymes in organic medium, which is important for dis-
covery of new enzyme activities. Further studies focusing on the
improvement of enantioselectivity of this enzyme catalyzed asym-
metric transformation are currently under investigation.
[13] S. Witayakran, A.J. Ragauskas, Eur. J. Org. Chem. (2009) 358–363.
[14] C. Branneby, P. Carlqvist, A. Magnusson, K. Hult, T. Brinck, P. Berglund, J. Am.
Chem. Soc. 125 (2003) 874–875.
[15] T. Kitazume, T. Ikeya, K. Murata, J. Chem. Soc. Chem. Commun. (1986)
1331–1333.
[16] Y. Cai, X.F. Sun, N. Wang, X.F. Lin, Synthesis 5 (2004) 671–674.
[17] O. Torre, I. Alfonso, V. Gotor, Chem. Commun. (2004) 1724–1725.
[18] R.O.M.A. de Souza, L.M.C. Matos, K.M. Goncalves, I.C.R. Costa, I. Babics, S.G.F.
Leite, E.G. Oestreicher, O.A.C. Antunes, Tetrahedron Lett. 50 (2009) 2017–2018.
[19] Y. Cai, Q. Wu, Y.M. Xiao, D.S. Lv, X.F. Lin, J. Biotechnol. 121 (2006) 330–337.
[20] Y. Cai, S.P. Yao, Q. Wu, X.F. Lin, Biotechnol. Lett. 26 (2004) 525–528.
[21] O. Torre, V. Gotor-Fernandez, I. Alfonso, L.F. Garcia-Alles, V. Gotor, Adv. Synth.
Catal. 347 (2005) 1007–1014.
[22] S.P. Yao, D.S. Lu, Q. Wu, Y. Cai, S.H. Xu, X.F. Lin, Chem. Commun. 17 (2004)
2006–2007.
[23] H.X. Dai, S.P. Yao, J. Wang, Biotechnol. Lett. 28 (2006) 1503–1507.
[24] J.M. Xu, S.P. Yao, W.B. Wu, D.S. Lv, X.F. Lin, J. Mol. Catal. B: Enzym 35 (2005)
122–127.
[25] J. Priego, C. Ortíz-Nava, M. Carrillo-Morales, A. López-Munguía, J. Escalante, E.
Castillo, Tetrahedron 65 (2009) 536–539.
Acknowledgements
[26] T. Kitazume, K. Murata, J. Fluorine Chem. 39 (1988) 75–86.
[27] P. Carlqvist, M. Svedendahl, C. Branneby, K. Hult, T. Brinck, P. Berglund, Chem-
BioChem 6 (2005) 331–336.
[28] J.M. Xu, F. Zhang, B.K. Liu, Q. Wu, X.F. Lin, Chem. Commun. (2007) 2078–2080.
[29] J.M. Xu, F. Zhang, Q. Wu, Q.Y. Zhang, X.F. Lin, J. Mol. Catal. B: Enzym 49 (2007)
50–54.
Financial support from Natural Science Foundation Project of CQ
CSTC (2009BA5051) is gratefully acknowledged. We thank Amano
Enzyme Inc. (Shanghai, PR China) for their generous donation of
three kinds of lipases and kind support.
[30] A.M. Klibanov, Nature 409 (2001) 241–246.
[31] Y. Hirose, K. Kariya, I. Sasaki, Y. Kurono, H. Ebiike, K. Achiwa, Tetrahedron Lett.
33 (1992) 7157–7160.
Appendix A. Supplementary data
[32] S. Ueji, R. Fujino, N. Okubo, T. Miyazawa, S. Kurita, M. Kitadani, A. Muromatsu,
Biotechnol. Lett. 14 (1992) 163–168.
[33] S. Parida, J.S. Dordick, J. Am. Chem. Soc. 113 (1991) 2253–2259.
[34] S. Parida, J.S. Dordick, J. Org. Chem. 58 (1993) 3238–3244.
[35] J.F. Martins, M. Nunes da Ponte, S. Barreiros, Biotechnol. Bioeng. 42 (1993)
465–468.
[36] C.R. Wescott, A.M. Klibanov, Biochim. Biophys. Acta 1206 (1994) 1–9.
[37] G. Carrea, G. Ottolina, S. Riva, Trends Biotechnol. 13 (1995) 63–70.
[38] R. Bovara, B. Carrea, L. Ferrara, S. Riva, Tetrahedron: Asymmetry 2 (1991)
931–938.
[39] F. Secundo, S. Riva, G. Carrea, Tetrahedron: Asymmetry 3 (1992) 267–280.
[40] S.H. Wu, F.Y. Chu, K.T. Wang, Bioorg. Med. Chem. Lett. 1 (1991) 339–342.
[41] S. Tawaki, A.W. Klibanov, J. Am. Chem. Soc. 114 (1992) 1882–1884.
[42] K. Aplander, R. Ding, M. Krasavin, U.M. Lindström, J. Wennerberg, Eur. J. Org.
Chem. (2009) 810–821.
[43] T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 125 (2003) 12672–12673.
[44] S. Velmathietal, Tetrahedron: Asymmetry 14 (2003) 113–117.
[45] D.A. Evans, D. Seidel, J. Am. Chem. Soc. 127 (2005) 9958–9959.
[46] D. Almasi, D.A. Alonso, E. Gomez-Bengoa, C. Najera, J. Org. Chem. 74 (2009)
6163–6168.
[47] S. Abraham, G. Sundararajan, Tetrahedron 62 (2006) 1474–1478.
[48] J.P. Malerich, K. Hagihara, V.H. Rawal, J. Am. Chem. Soc. 130 (2008)
14416–14417.
Supplementary data associated with this article can be found, in
References
[1] R. Ballini, M. Petrini, Tetrahedron 60 (2004) 1017–1047.
[2] R. Tamura, A. Kamimura, N. Ono, Synthesis (1991) 423–434.
[3] M.A. Poupart, G. Fazal, S. Goulet, L.T. Mar, J. Org. Chem. 64 (1999) 1356–1361.
[4] M.J. Kamlet, L.A. Kaplan, J.C. Dacons, J. Org. Chem. 26 (1961) 4371–4375.
[5] T. Mukayama, T. Hoshino, J. Am. Chem. Soc. 82 (1960) 5339–5342.
[6] B.M. Choudary, M.L. Kantam, B. Kavita, C.V. Reddy, F. Figueras, Tetrahedron 56
(2000) 9357–9364.
[7] W.A. Greenberg, A. Varvak, S.R. Hanson, K. Wong, H.-J. Huang, P. Chen, M.J. Burk,
Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 5788–5793.
[8] X.-W. Feng, C. Li, N. Wang, K. Li, W.-W. Zhang, Z. Wang, X.-Q. Yu, Green Chem.
11 (2009) 1933–1936.
[9] H.J. Lamble, M.J. Danson, D.W. Hough, S.D. Bull, Chem. Commun. (2005)
124–126.
[10] J. Sukumaran, U. Hanefeld, Chem. Soc. Rev. 34 (2005) 530–542.
[11] M. Svedendahl, K. Hult, P. Berglund, J. Am. Chem. Soc. 127 (2005)
17988–17989.
[49] D.A. Evans, S. Mito, D. Seidel, J. Am. Chem. Soc. 129 (2007) 11583–11592.
[50] A. Zaks, A.M. Klibanov, J. Biol. Chem. 263 (1988) 8017–8021.
[12] G.A. Strohmeier, G. Steinkellner, F.S. Hartner, A. Andryushkova, T. Purkarthofer,
A. Glieder, K. Gruber, H. Griengl, Tetrahedron 65 (2009) 5663–5668.