Published on Web 02/09/2007
Three-Dimensional Porous Coordination Polymer
Functionalized with Amide Groups Based on Tridentate
Ligand: Selective Sorption and Catalysis
Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa,
Katsunori Mochizuki, Yoshinori Kinoshita, and Susumu Kitagawa*
Contribution from the Department of Synthetic Chemistry and Biological Chemistry, Graduate
School of Engineering, Kyoto UniVersity, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
Received October 14, 2006; E-mail: kitagawa@sbchem.kyoto-u.ac.jp
Abstract: To create a functionalized porous compound, amide group is used in porous framework to produce
attractive interactions with guest molecules. To avoid hydrogen-bond formation between these amide groups
our strategy was to build a three-dimensional (3D) coordination network using a tridentate amide ligand as
the three-connector part. From Cd(NO3)2‚4H2O and a three-connector ligand with amide groups a 3D porous
coordination polymer (PCP) based on octahedral Cd(II) centers, {[Cd(4-btapa)2(NO3)2]‚6H2O‚2DMF}n (1a),
was obtained (4-btapa ) 1,3,5-benzene tricarboxylic acid tris[N-(4-pyridyl)amide]). The amide groups, which
act as guest interaction sites, occur on the surfaces of channels with dimensions of 4.7 × 7.3 Å2. X-ray
powder diffraction measurements showed that the desolvated compound (1b) selectively includes guests
with a concurrent flexible structural (amorphous-to-crystalline) transformation. The highly ordered amide
groups in the channels play an important role in the interaction with the guest molecules, which was
confirmed by thermogravimetric analysis, adsorption/desorption measurements, and X-ray crystallography.
We also performed a Knoevenagel condensation reaction catalyzed by 1a to demonstrate its selective
heterogeneous base catalytic properties, which depend on the sizes of the reactants. The solid catalyst 1a
maintains its crystalline framework after the reaction and is easily recycled.
Introduction
this synthetic approach to the PCP system has received little
attention. Two types of strategies are used to functionalize
In recent years, numerous studies of porous coordination
polymers (PCPs), also called metal-organic frameworks (MOFs),
have been reported1 because of their applications in gas
adsorption,2 molecular storage,3 and heterogeneous catalysis.4
PCPs have characteristic features that include (1) well-ordered
porous structures, (2) flexible and dynamic behaviors in response
to guest molecules, and (3) designable channel surface func-
tionalities. Although channel surface modification is essential
for creation of functionalized porous structures, application of
channel surfaces: immobilization of coordinatively unsaturated
(open) metal sites (OMS)5 and introduction of organic groups
to provide guest-accessible functional organic sites (FOS).4b,6
There is growing interest in the use of OMS for Lewis acid
catalysis and specific gas adsorption, but less attention has been
devoted to the study of FOS, despite their importance. The
paucity of information on FOS is because of the difficulty of
producing guest-accessible FOS on the pore surface: these
(1) (a) Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc Chem.
Res. 1998, 31, 474-484. (b) Batten, S. R. Curr. Opin. Solid State Mater.
Sci. 2001, 5, 107-114. (c) Moulton, B.; Zaworotko, M. J. Chem. ReV.
2001, 101, 1629-1658. (d) Janiak, C. Dalton Trans. 2003, 2781-2804.
(e) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43,
2334-2375. (f) Rosseinsky, M. J. Microporous Mesoporous Mater. 2004,
73, 15-30.
(2) (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe,
M.; Yaghi, O. M. Science 2002, 295, 469-472. (b) Kitaura, R.; Kitagawa,
S.; Kubota, Y.; Kobayashi, T. C.; Kindo, K.; Mita, Y.; Matsuo, A.;
Kobayashi, M.; Chang, H. C.; Ozawa, T. C.; Suzuki, M.; Sakata, M.; Takata,
M. Science 2002, 298, 2358-2361. (c) Fe´rey, G.; Latroche, M.; Serre, C.;
Millange, F.; Loiseau, T.; Gue´gan, A. P. Chem. Commun. 2003, 2976-
2977. (d) Chu, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem. Eur. J. 2005,
11, 3521-3529. (e) Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int.
Ed. 2005, 44, 4670-4679. (f) Matsuda, R.; Kitaura, R.; Kitagawa, S.;
Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba,
T.; Takata, M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238-241. (g)
Dincaˇ, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376-9377.
(3) (a) Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1996, 118, 295-296. (b)
Dalrymple, S. A.; Shimizu, G. K. H. Chem. Eur. J. 2002, 8, 3010-3015.
(c) Kosal, M. E.; Chou, J. H.; Wilson, S. R.; Suslick, K. S. Nat. Mater.
2002, 1, 118-121. (d) Kim, H.; Suh, M. P. Inorg. Chem. 2005, 44, 810-
812.
(4) (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc.
1994, 116, 1151-1152. (b) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh,
J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982-986. (c) Wu, C. D.; Hu,
A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940-8941. (d) Lor,
B. G.; Puebla, E. G.; Iglesias, M.; Monge, M. A.; Valero, C. R.; Snejko,
N. Chem. Mater. 2005, 17, 2568-2573. (e) Sato, T.; Mori, W.; Kato,
C. N.; Yanaoka, E.; Kuribayashi, T.; Ohtera, R.; Shiraishi, Y. J. Catal.
2005, 232, 186-198. (f) Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H.;
Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem., Int.
Ed. 2006, 45, 916-920. (g) Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka,
M.; Kitagawa, S. Angew. Chem., Int. Ed. 2006, 45, 4112-4116.
(5) (a) Noro, S.; Kitagawa, S.; Yamashita, M.; Wada, T. Chem. Commun. 2002,
222-223. (b) Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro,
S.; Kitagawa, S. Angew. Chem., Int. Ed. 2004, 43, 2684-2687. (c) Chen,
B.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 2004, 43, 8209-8211.
(d) Maggard, P. A.; Yan, B.; Luo, J. Angew. Chem., Int. Ed. 2005, 44,
2-5. (e) Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.;
Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4745-4749. (f) Cho,
S. H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. Chem.
Commun. 2006, 2563-2565.
(6) (a) Kitaura, R.; Fujimoto, K.; Noro, S.; Kondo, M.; Kitagawa, S.; Angew.
Chem., Int. Ed. 2002, 41, 133-135. (b) Shin, D. M.; Lee, I. S.; Chung,
Y. K. Inorg. Chem. 2003, 42, 8838-8846. (c) Custelcean, R.; Gorbunova,
M. G. J. Am. Chem. Soc. 2005, 127, 16362-16363.
9
10.1021/ja067374y CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 2607-2614
2607