140
C. Lv et al. / Catalysis Communications 27 (2012) 138–140
Table 1
employing bifunctional N-oxide salen-Al complex as catalyst could pro-
mote the reaction smoothly without adding Ph3PO as co-catalyst and
give excellent yields and high ee values under milder conditions (0 °C,
1.2 equiv. TMSCN and 10 h) than bi-component catalyst system. Fur-
thermore, inverse configurations were generated from the two systems.
Developing new, efficient and highly enantioselective ligands and fur-
ther studies on asymmetric catalysis are currently underway in our
laboratory.
The screening of reaction conditions for the addition of TMSCN to benzaldehyde.a
Entry
Cat. (mol%)
TMSCN
(equiv)
Ph3PO (mol%)
Conv.b (%)
Eec (%)
1
2
3
1a+AlEt2Cl (2)
1b+AlEt2Cl (2)
3 (2)
3 (2)
3 (1)
2a+AlEt2Cl (2)
2b+AlEt2Cl (2)
4 (2)
4 (2)
4 (1)
1.5
1.5
1.5
1.5
2.0
1.5
1.5
1.5
1.5
1.2
10
10
10
0
10
0
0
0
10
0
93
92
96
16
99
99
99
99
99
99
rac
9 (S)
13 (S)
8 (R)
82 (S)
23 (R)
25 (R)
30 (R)
30 (R)
80 (R)
Acknowledgement
4
We are grateful for financial support from the Chinese Academy of
Sciences and the National Natural Science Foundation of China
(21073210, 20873166).
5d
6
7
8
9
Appendix A. Supplementary data
10e
a
Conditions: entries 1–4 are carried out at rt for 20 h, entries 6–9 are carried out for
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.catcom.2012.06.025.
10 h.
b
c
GC yield, n-nonane as internal standard.
Enantiomeric excess of silyl ether is determined by chiral GC with
a
References
CP-Chirasil-Dex CB column. Absolute configuration is based on the known order of elu-
tion of the two enantiomers.
[1] R.J.H. Gregory, Chemical Reviews 99 (1999) 3649.
[2] J.M. Brunel, I.P. Holmes, Angewandte Chemie, International Edition 43 (2004)
2752.
d
T=−10 °C, t=24 h.
e
T=0 °C, t=10 h.
[3] M. North, D.L. Usanov, C. Young, Chemical Reviews 108 (2008) 5146.
[4] X.H. Liu, L.L. Lin, X.M. Feng, Accounts of Chemical Research 44 (2011) 574.
[5] M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keβler, R. Stürmer, T. Zelinski,
Angewandte Chemie, International Edition 43 (2004) 788.
[6] D.H. Ryu, E.J. Corey, Journal of the American Chemical Society 126 (2004) 8106.
[7] S.S. Kim, J.M. Kwak, S.C. George, Applied Organometallic Chemistry 21 (2007)
809.
the comparison experiments were also done employing 3 and Ph3PO
as the catalyst. Similar results were obtained and summarized in
Table S3.
[8] M. North, P. Villuendas, C. Williamson, Tetrahedron 66 (2010) 1915.
[9] G. Rajagopal, S. Selvaraj, K. Dhahagani, Tetrahedron-Asymmetry 21 (2010) 2265.
[10] W. Pan, X. Feng, L. Gong, W. Hu, Z. Li, A. Mi, Y. Jiang, Synlett (1996) 337.
[11] A. Alaaeddine, T. Roisnel, C.M. Thomas, J.F. Carpentier, Advanced Synthesis and
Catalysis 350 (2008) 731.
[12] Z. Zeng, G.F. Zhao, Z.H. Zhou, C.C. Tang, European Journal of Organic Chemistry
(2008) 1615.
[13] J.J. Cao, F. Zhou, J. Zhou, Angewandte Chemie, International Edition 49 (2010)
4976.
4. Conclusion
In conclusion, bifunctional N-oxide salen-Al complex with new di-
amine backbone for asymmetric cyanosilylation has been developed.
The catalytic activity and asymmetric induction ability of bifunctional
catalyst were compared with that of simple chiral pyrrolidine
salen-Al(III) complex in combination with Ph3PO. Interestingly,
[14] Z.P. Zhang, Z. Wang, R.Z. Zhang, K.L. Ding, Angewandte Chemie, International Edi-
tion 49 (2010) 6746.
[15] Y.N. Belokoń, S. Caveda-Cepas, B. Green, N.S. Ikonnikov, V.N. Khrustalev, V.S.
Larichev, M.A. Moscalenko, M. North, C. Orizu, V.I. Tararov, M. Tasinazzo, G.I.
Timofeeva, L.V. Yashkina, Journal of the American Chemical Society 121 (1999)
3968.
Table 2
Cyanation of aldehydes with TMSCN catalyzed by catalyst 4.a
[16] M. North, C. Williamson, Tetrahedron Letters 50 (2009) 3249.
[17] S.S. Kim, D.H. Song, European Journal of Organic Chemistry (2005) 1777.
[18] Y.C. Qin, L. Liu, L. Pu, Organic Letters 7 (2005) 2381.
[19] J. Casas, C. Nájera, J.M. Sansano, J.M. Saá, Organic Letters 4 (2002) 2589.
[20] Y. Hamashima, D. Sawada, M. Kanai, M. Shibasaki, Journal of the American Chem-
ical Society 121 (1999) 2641.
[21] M. Nakajima, M. Saito, M. Shiro, S.I. Hashimoto, Journal of the American Chemical
Society 120 (1998) 6419.
[22] A.V. Malkov, P. Ramírez-López, L. Biedermannová, L. Rulíšek, L. Dufková, M.
Kotora, F.J. Zhu, P. Kočovský, Journal of the American Chemical Society 130
(2008) 5341.
Entry
Aldehyde
Cat. 4
Yieldb
(%)
Eec
(%)
1
2
3
4
5
6
7
8
Benzaldehyde
97
93
93
89
95
96
93
96
88
90
85
98
94
91
9
80 (R)
76 (R)
80 (R)
67 (R)
45 (R)
86 (R)
84 (R)
82 (R)
54 (R)
12
4-Methyl benzaldehyde
3-Methyl benzaldehyde
2-Methyl benzaldehyde
4-Methoxy benzaldehyde
3-Methoxy benzaldehyde
2-Methoxy benzaldehyde
4-Chloro benzaldehyde
2-chloro benzaldehyde
2,6-Dichloro benzaldehyde
2-Bromo benzaldehyde
4-Tri-fluoromethyl benzaldehyde
Furfural
[23] V. Derdau, S. Laschat, E. Hupe, W.A. König, I. Dix, P.G. Jones, European Journal of
Inorganic Chemistry (1999) 1001.
[24] M. Nakajima, T. Yokota, M. Saito, S. Hashimoto, Tetrahedron Letters 45 (2004) 61.
[25] I.A. O'Neil, C.D. Turner, S.B. Kalindjian, Synlett (1997) 777.
[26] G. Chelucci, G. Murineddu, G.A. Pinna, Tetrahedron-Asymmetry 15 (2004) 1373.
[27] A.V. Malkov, P. Kočovský, European Journal of Organic Chemistry (2007) 29.
[28] C.W. Lv, D.Q. Xu, S.F. Wang, C.X. Miao, C.G. Xia, W. Sun, Catalysis Communications
12 (2011) 1242.
[29] C.W. Lv, Q.G. Cheng, D.Q. Xu, S.F. Wang, C.G. Xia, W. Sun, European Journal of Or-
ganic Chemistry (2011) 3407.
[30] B. Wang, C.X. Miao, S.F. Wang, C.G. Xia, W. Sun, Chemistry A European Journal 18
(2012) 6750.
[31] B. Wang, S.F. Wang, C.G. Xia, W. Sun, Chemistry A European Journal 18 (2012)
7332.
[32] D.Q. Xu, S.F. Wang, Z.Q. Shen, C.G. Xia, W. Sun, Organic and Biomolecular Chem-
istry 10 (2012) 2730.
[33] M. Wu, C.X. Miao, S.F. Wang, X.X. Hu, F.E. Kühn, C.G. Xia, W. Sun, Advanced Syn-
thesis and Catalysis 353 (2011) 3014.
[34] W.B. Yang, J.M. Fang, Journal of Organic Chemistry 63 (1998) 1356.
[35] N. Kurono, K. Arai, M. Uemura, T. Ohkuma, Angewandte Chemie, International
Edition 47 (2008) 6643.
9
10
11
12
13
14
15
16
72
92 (R)
76 (R)
68 (R)
54 (R)
76 (R)
Cinnamaldehyde
Trimethyl acetaldehyde
Heptaldehyde
90
a
All reactions are carried out in the present of 1 mol% of 4 in toluene at 0 °C for 10 h
with 1.2 equiv TMSCN.
b
Isolated yield.
c
Enantiomeric excess of silyl ether is determined by chiral GC with a CP-Chirasil-Dex
CB column. Absolute configurations were determined by comparison the known order
of elution of the two enantiomers.