tors and electron rich ligandssthat takes advantage of the
directional bonding approach has enabled the development of
coordination-driven self-assembly, as witnessed by the myriad
metallo-supramolecular polygons and polyhedra synthesized to
date.3 Generally, complementary subunits utilized in this ap-
proach exhibit high symmetry and contain equivalent binding
sites. Much more complicated systems and situations arise when
unsymmetrical building blocks bearing different binding sites
are employed. In accord with the second Law of Thermodynam-
ics, a self-assembly involving unsymmetrical subunits will likely
produce a statistical mixture of various supramolecular isomers
provided that no driving bias exists in the system.4
Geometry Directed Self-Selection in the
Coordination-Driven Self-Assembly of Irregular
Supramolecular Polygons
Yao-Rong Zheng,† Brian H Northrop,† Hai-Bo Yang,‡
Liang Zhao,† and Peter J. Stang*,†
Department of Chemistry, UniVersity of Utah, 315 South
1400 East, RM, 2020, Salt Lake City, Utah, 84112, and
Shanghai Key Laboratory of Green Chemistry and Chemical
Processes, Department of Chemistry, East China Normal
UniVersity, Shanghai, China 200062
The selective self-assembly of one discrete structure from
within a complex mixture that has the potential of producing
multiple isomeric supramolecules can be achieved via a self-
selection process provided that there exists some form(s) of
molecular information encoded within complementary subunits
that biases the formation of one isomer over the other(s).5 We
have previously shown that self-selection can occur during the
self-assembly of unsymmetrical ambidentate pyridylcarboxylate
ligands with ditopic organoplatinum acceptors, wherein the
driving force for self-selection rests in the preference for
maximum charge separation in the supramolecular rhomboidal
isomers.5a Recently, a thorough study of the self-selection of
supramolecular squares clearly indicates that steric features
encoded within unsymmetrical subunits can also control the
fidelity of self-selection.5d
Controlling the geometric features of molecular subunits is
an alternative approach for influencing self-selection during self-
assembly. In accordance with the directional bonding approach
to coordination-driven self-assembly, small changes in the
geometry of individual molecular subunits can be used to drive
self-organization phenomena.6 In recent reports, we have
demonstrated that manipulation of the geometric factors (e.g.,
size, directionality) of rigid symmetric molecular subunits allows
for the selective self-assembly of multiple discrete supramo-
lecular polygons and polyhedra from within multicomponent
supramolecular systems,6c,e,f and this approach has been gen-
ReceiVed February 10, 2009
The self-assembly of irregular metallo-supramolecular hexa-
gons and parallelograms has been achieved in a self-selective
manner upon mixing 120° unsymmetrical dipyridyl ligands
with 60° or 120° organoplatinum acceptors in a 1:1 ratio.
The polygons have been characterized using 31P and H
1
multinuclear NMR spectroscopy and electrospray ionization
mass spectrometry (ESI-MS) as well as X-ray crystal-
lography. Geometric features of the molecular subunits direct
the self-selection process, which is supported by molecular
force field computations.
Coordination-driven, transition metal-mediated self-assembly
has become a well-established methodology in supramolecular
chemistry for constructing ensembles exhibiting wide structural
diversity1 and functionality.2 The rational design of rigid
complementary molecular subunitsselectron poor metal accep-
(3) (a) Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502. (b) Leininger,
S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853. (c) Seidel, S. R.; Stang,
P. J. Acc. Chem. Res. 2002, 35, 972. (d) Northrop, B. H.; Chercka, D.; Stang,
P. J. Tetrahedron 2008, 64, 11495.
(4) (a) Barboiu, M.; Petit, E.; van der Lee, A.; Vaughan, G. Inorg. Chem.
2006, 45, 484. (b) Legrand, Y.-M.; van der Lee, A.; Barboiu, M. Inorg. Chem.
2007, 46, 9540. (c) Hutin, M.; Cramer, C. J.; Gagliardi, L.; Shahi, A. R. M.;
Bernardinelli, G.; Cerny, R.; Nitschke, J. R. J. Am. Chem. Soc. 2007, 129, 8774.
(d) Langner, A.; Tait, S. L.; Lin, N.; Rajadurai, C.; Ruben, M.; Kern, K. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 17927. (e) Rang, A.; Engeser, M.; Maier,
N. M.; Nieger, M.; Lindner, W.; Schalley, C. A. Chem.-Eur. J. 2008, 14, 3855.
(5) (a) Chi, K.-W.; Addicott, C.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc.
2004, 126, 16569. (b) Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon,
S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. (c) Ghosh, S.; Turner, D. R.;
Batten, S. R.; Mukherjee, P. S. Dalton Trans. 2007, 1869. (d) Zhao, L.; Northrop,
B. H.; Zheng, Y.-R.; Yang, H.-B.; Lee, H. J.; Lee, Y. M.; Park, J. Y.; Chi,
K.-W.; Stang, P. J. J. Org. Chem. 2008, 73, 6580.
(6) (a) Kra¨mer, R.; Lehn, J.-M.; Marquis-Rigault, A. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 5394. (b) Caulder, D. L.; Raymond, K. N. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1440. (c) Addicott, C.; Das, N.; Stang, P. J. Inorg. Chem.
2004, 43, 5335. (d) Kamada, T.; Aratani, N.; Ikeda, T.; Shibata, N.; Higuchi,
Y.; Wakamiya, A.; Yamaguchi, S.; Kim, K. S.; Yoon, Z. S.; Kim, D.; Osuka,
A. J. Am. Chem. Soc. 2006, 128, 7670. (e) Yang, H.-B.; Ghosh, K.; Northrop,
B. H.; Stang, P. J. Org. Lett. 2007, 9, 1561. (f) Zheng, Y.-R.; Yang, H.-B.;
Northrop, B. H.; Ghosh, K.; Stang, P. J. Inorg. Chem. 2008, 47, 4706. (g) Zheng,
Y.-R.; Yang, H.-B.; Ghosh, K.; Zhao, L.; Stang, P. J. Chem.-Eur. J., accepted.
† University of Utah.
‡ East China Normal University.
(1) (a) Lehn, J.-M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.;
Moras, D Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2565. (b) Holliday, B. J.; Mirkin,
C. A. Angew. Chem., Int. Ed. 2001, 40, 2022. (c) Fujita, M.; Umemoto, K.;
Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001,
509. (d) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn,
J.-M. Angew. Chem., Int. Ed. 2004, 43, 3644. (e) Fiedler, D.; Leung, D. H.;
Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351. (f) Fujita, M.;
Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369. (g) Lukin,
O.; Voegtle, F. Angew. Chem., Int. Ed. 2005, 44, 1456. (h) Severin, K. Chem.
Commun. 2006, 3859. (i) Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103. (j)
Pitt, M. A.; Johnson, D. W. Chem. Soc. ReV. 2007, 36, 1441. (k) Schmittel, M.;
Mahata, K. Angew. Chem., Int. Ed. 2008, 47, 5284.
(2) (a) Yoshizawa, M.; Takeyama, Y.; Kusukawa, T.; Fujita, M. Angew.
Chem., Int. Ed. 2002, 41, 1347. (b) Wu¨rthner, F.; You, C. C.; Saha-Mo¨ller, C. R.
Chem. Soc. ReV. 2004, 33, 133. (c) Murase, T.; Sato, S.; Fujita, M. Angew.
Chem., Int. Ed. 2007, 46, 1083. (d) Balzani, V.; Bergamini, G.; Campagna, S.;
Puntoriero, F. Top. Curr. Chem. 2007, 280, 1. (e) Northrop, B. H.; Yang, H.-B.;
Stang, P. J. Chem. Commun. 2008, 5896.
3554 J. Org. Chem. 2009, 74, 3554–3557
10.1021/jo9002932 CCC: $40.75 2009 American Chemical Society
Published on Web 04/06/2009