ACCEPTED MANUSCRIPT
nanomaterials toward targeted drug delivery. Nano today 2016; 11; 41-60.
15. Ramos Sasselli I, Halling PJ, Ulijn RV, Tuttle T. Supramolecular Fibers in Gels Can Be at Thermodynamic
Equilibrium: A Simple Packing Model Reveals Preferential Fibril Formation versus Crystallization. ACS Nano 2016;
10; 2661-68.
16. Raeburn J, Cardoso AZ, Adams DJ. The importance of the self-assembly process to control mechanical
properties of low molecular weight hydrogels. Chem Soc Rev 2013; 42; 5143-56.
7. Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical
properties and technological applications. Acta Biomater 2014; 10; 1671-82.
8. Yoshii T, Onogi S, Shigemitsu H, Hamachi I. Chemically Reactive Supramolecular Hydrogel Coupled with a
Signal Amplification System for Enhanced Analyte Sensitivity. J Am Chem Soc 2015; 137; 3360-65.
9. Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, Hamachi I. In situ real-time imaging of
self-sorted supramolecular nanofibres. Nature Chem 2016; 8; 743–52.
0. Li X, Yang C, Zhang Z, Wu Z, Deng Y, Liang G, Yang Z, Chen H. Folic acid as a versatile motif to construct
molecular hydrogelators through conjugations with hydrophobic therapeutic agents. J Mater Chem 2012; 22;
1
1
1
2
21838-40.
21. Ha W, Yu J, Song X-y, Zhang Z-j, Liu Y-q, Shi Y-p. Prodrugs forming multifunctional supramolecular hydrogels
for dual cancer drug delivery. J Mater Chem B 2013; 1; 5532-38.
2. Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B. Dephosphorylation of D-peptide derivatives to
2
form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging
and intratumoral chemotherapy. J Am Chem Soc 2013; 135; 9907-14.
2
3. Chen Z, Zhang P, Cheetham AG, Moon JH, Moxley JW, Lin Y-a, Cui H. Controlled release of free doxorubicin
from peptide-drug conjugates by drug loading. J Control Release 2014; 191; 123-30.
4. Li X, Wang Y, Yang C, Shi S, Jin L, Luo Z, Yu J, Zhang Z, Yang Z, Chen H. Supramolecular nanofibers of
triamcinolone acetonide for uveitis therapy. Nanoscale 2014; 6; 14488-94.
5. Kalafatovic D, Nobis M, Javid N, Frederix PWJM, Anderson KI, Saunders BR, Ulijn RV. MMP-9 triggered
micelle-to-fibre transitions for slow release of doxorubicin. Biomater Sci 2015; 3; 246-49.
2
2
26. Lin R, Cui H. Supramolecular nanostructures as drug carriers. Curr Opin Chem Eng 2015; 7; 75-83.
27. Mei B, Miao Q, Tang A, Liang G. Enzyme-instructed self-assembly of taxol promotes axonal branching.
Nanoscale 2015; 7; 15605-08.
8. Zhou Y, Cui H, Shu C, Ling Y, Wang R, Li H, Chen Y, Lu T, Zhong W. A supramolecular hydrogel based on
carbamazepine. Chem Commun 2015; 51; 15294-96.
2
29. Ma W, Cheetham AG, Cui H. Building nanostructures with drugs. Nano Today 2016; 11; 13-30.
30. Li X, Pu G, Yu X, Shi S, Yu J, Zhao W, Luo Z, He Z, Chen H. Supramolecular hydrogel of non-steroidal
anti-inflammatory drugs: preparation, characterization and ocular biocompatibility. RSC Adv 2016; 6; 62434-38.
1. Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S. Effects of astaxanthin on
lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophth Vis Sci 2003; 44; 2694-701.
2. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF,
Woolfson DN. Rational design and application of responsive α-helical peptide hydrogels. Nat Mater 2009; 8;
3
3
596-600.
33. Ou C, Zhang J, Zhang X, Yang Z, Chen M. Phenothiazine as an aromatic capping group to construct a short
peptide-based "super gelator". Chem Commun 2013; 49; 1853-55.
4. Hoekzema R, Murray PI, Van Haren MA, Helle M, Kijlstra A. Analysis of interleukin-6 in endotoxin-induced
uveitis. Invest Ophth Vis Sci 1991; 32; 88-95.
5. Hoekzema R, Verhagen C, Van Haren M, Kijlstra A. Endotoxin-induced uveitis in the rat. The significance of
3
3
15