390
A. HASHIMOTO et al.
degradation and mineralization by pseudomonads
and Methylosinus trichosporium OB3b. Appl.
Microbiol. Biotechnol., 45, 248–256 (1996).
64, 1372–1378 (1998).
19) Mackay, D., Shiu, W. Y., and Ma, K. C., Eds.,
Illustrated handbook of physical-chemical properties
and environmental fate for organic chemicals. Vol. 3.
Lewis Publishers, London (1993).
10) Malachowsky, K. J., Phelps, T. J., Teboli, A. B.,
Minnikin, D. E., and White, D. C., Aerobic minerali-
zation of trichloroethylene, vinyl chloride, and
aromatic compounds by Rhodococcus species. Appl.
Environ. Microbiol., 60, 542–548 (1994).
11) Vanderberg, L. A. and Perry, J. J., Dehalogenation
by Mycobacterium vaccae JOB-5: role of the propane
monooxygenase. Can. J. Microbiol., 40, 169–172
(1994).
12) Vanderberg, L. A., Burback, B. L., and Perry, J. J.,
Biodegradation of trichloroethylene by Mycobacteri-
um vaccae. Can. J. Microbiol., 41, 298–301 (1995).
13) Reij, M. W., Kieboom, J., de Bont, J. A. M., and
20) Ozawa, H., and Tsukioka, T., Gas chromatographic
separation and determination of chloroacetic acids in
water by a di‰uoroanilide derivatisation method.
Analyst., 115, 1343–1347 (1990).
21) Saeki, S., Mukai, S., Iwasaki, K., and Yagi, O.,
Production of trichloroacetic acid, trichloroethanol
and dichloroacetic acid from trichloroethylene degra-
dation by Methylocystis sp. strain M. Biocatalysis
Biotransform., 17, 347–357 (1999).
22) Lefever, M. R. and Wackett, L. P., Oxidation of low
molecular weight chloroalkanes by cytochrome
P450CAM. Biochem. Biophys. Res. Commun., 201,
373–378 (1994).
Hartmans,
S.,
Continuous
degradation
of
trichloroethylene by Xanthobacter sp. strain Py2 dur-
ing growth on propene. Appl. Environ. Microbiol.
61, 2936–2942 (1995).
,
23) Saeki, H., Akira, M., Furuhashi, K., AverhoŠ, B.,
and Gottschalk, G., Degradation of trichloroethene
by a linear-plasmid-encoded alkene monooxygenase
14) Hyman, M. R., Russell, S. A., Ely, R. L.,
Williamson, K. J., and Arp, D. J., Inhibition, inacti-
vation, and recovery of ammonia-oxidizing activity in
cometabolism of trichloroethylene by Nitrosomonas
europaea. Appl. Environ. Microbiol., 61, 1480–1487
(1995).
15) Yagi, O., Hashimoto, A., Iwasaki, K., and
Nakajima, M., Aerobic degradation of 1,1,1-
trichloroethane by Mycobacterium spp. isolated from
in Rhodococcus corallinus
B-276. Microbiology, 145, 1721–1730 (1999).
(Nocardia corallina)
24) Nakajima, T., Uchiyama, H., Yagi, O., and
Nakahara, T., Novel metabolite of trichloroethylene
in a methanotrophic bacterium, Methylocystis sp. M,
and hypothetical degradation pathway. Biosci.
Biotechnol. Biochem., 56, 486–489 (1992).
25) Uchiyama, H., Nakajima, T., Yagi, O., and
Nakahara, T., Role of heterotrophic bacteria in com-
plete mineralization of trichloroethylene by
Methylocystis sp. strain M. Appl. Environ.
Microbiol., 58, 3067–3071 (1992).
26) Kawai, T., Yamaoka, K., Uchida, Y., and Ikeda, M.,
Exposure of 1,1,1-trichloroethane and dose-related
excretion of metabolites in urine of printing workers.
Toxicol. Lett., 55, 39–45 (1991).
27) Janssen, D. B., Scheper, A., Dijkhuizen, L., and
Witholt, B., Degradation of halogenated aliphatic
compounds by Xanthobacter autotrophicus GJ10.
Appl. Environ. Microbiol., 49, 673–677 (1985).
28) Yu, P. and Welander, T., Growth of an aerobic bac-
terium with trichloroacetic acid as the sole source of
energy and carbon. Appl. Microbiol. Biotechnol., 42,
769–774 (1995).
soil. Appl. Environ. Microbiol.
(1999).
, 65, 4693–4696
16) Hashimoto, A., Iwasaki, K., Nakasugi, N.,
Nakajima, M., and Yagi, O., Degradation of
trichloroethylene and related compounds by
Mycobacterium spp. isolated from soil. Clean
Products and Processes, 2, 167–173 (2000).
17) Hashimoto, A., Iwasaki, K., Nakajima, M., and
Yagi, O., Quantitative detection of trichloroethylene-
degrading Mycobacterium sp. TA27 with a real-time
PCR product detection system. Microb. Environ., 16,
109–116 (2001).
18) Hommes, N. G., Russell, S. A., Bottomley, P. J.,
and Arp, D. J., EŠects of soil on ammonia, ethylene,
chloroethane, and 1,1,1-trichloroethane oxidation by
Nitrosomonas europaea. Appl. Environ. Microbiol.
,