Communication
Organic & Biomolecular Chemistry
plausible mechanistic pathway for our I
2
/TBHP-promoted ring
Allergy Drug Discovery, 2007, 1, 69; (d) K. Okamoto,
B. T. Eger, T. Nishino, S. Kondol and E. F. Pai, J. Biol.
Chem., 2003, 278, 1848; (e) N. Mahanta, Z. G. Zhang,
G. A. Hudson, W. A. van der Donk and D. A. Mitchell,
J. Am. Chem. Soc., 2017, 139, 4310.
cyclization and oxidation reaction cascade is depicted in
Scheme 3. In the presence of potassium carbonate, the
cysteine ester initially underwent tandem imine formation and
cyclization to give intermediate C. Under the I /TBHP catalyst
2
system, compound C is converted to give partially oxidized
intermediate F via a sequence of hydrogen abstraction, single
electron transfer with I and elimination. Next, the I species,
generated by the oxidation of iodine, could react with inter-
mediate F and subsequent elimination of G to give the final
product 3a.
4 (a) A. Srivastava, G. Shukla, D. Yadav and M. S. Singh,
J. Org. Chem., 2017, 82, 10846; (b) T. Miura, Y. Funakoshi,
Y. Fujimoto, J. Nakahashi and M. Murakami, Org. Lett.,
2015, 17, 2454; (c) P. Hrobárik, V. Hrobáriková, V. Semak,
P. Kasak, E. Rakovsky, I. Polyzos, M. Fakis and
P. Persephonis, Org. Lett., 2014, 16,, 6358; (d) T. Tao,
B.-B. Ma, Y.-X. Peng, X.-X. Wang, W. Huang and X.-Z. You,
J. Org. Chem., 2013, 78, 8669; (e) Q. Shi, H. J. Fan, Y. Liu,
J. M. Chen, L. C. Ma, W. P. Hu, Z. G. Shuai, Y. F. Li and
X. W. Zhan, Macromolecules, 2011, 44, 4230; (f) T. Murai,
F. Hori and T. Maruyama, Org. Lett., 2011, 13, 1718;
+
+
Conclusions
In summary, we developed an efficient one-pot cascade cycliza-
tion/oxidation approach to synthesize substituted thiazoles
and benzothiazoles from readily available starting materials.
This catalytic protocol avoids using transition metal oxidants
and shows a broad substrate scope, providing consistently
good yields of thiazole products. Remarkably, the reaction
proved to be not only efficient in scale-up reactions, but
further functionalization was also easily possible, setting the
base for rapidly accessing medicinally relevant thiazole deriva-
tives. In comparison with the classical approaches, we antici-
pate that our method should provide a potential alternative.
(
g) A. Job, A. Wakamiya, G. Kehr, G. Erker and
S. Yamaguchi, Org. Lett., 2010, 12, 5470; (h) S. Caron,
R. W. Dugger, S. G. Ruggeri, J. A. Ragan and D. H. B. Ripin,
Chem. Rev., 2006, 106, 2943; (i) S. Ando, R. Murakami,
J. Nishida, H. Tada, Y. Inoue, S. Tokito and Y. Yamashita,
J. Am. Chem. Soc., 2005, 127, 14996.
5
(a) Y. Y. Wang, Z. Y. Li, Y. Huang, C. H. Tang, X. M. Wu and
J. Y. Xu, Tetrahedron, 2011, 67, 7406; (b) J. Deeley,
A. Bertram and G. Pattenden, Org. Biomol. Chem., 2008, 6,
1994; (c) P. Merino, T. Tejero, F. J. Unzurrunzaga, S. Franco,
U. Chiacchio, M. G. Saita, D. Iannazzo, A. Piperno and
G. Romeo, Tetrahedron: Asymmetry, 2005, 16, 3865;
Conflicts of interest
(
d) G. Serra, G. Mahler and E. Manta, Heterocycles, 1998, 48,
035; (e) T. Aoyama, N. Sonoda, M. Yamauchi, K. Toriyama,
M. Anzai, A. Ando and T. Shioiri, Synlett, 1998, 35;
f) D. R. Williams, P. D. Lowder, Y. G. Gu and D. A. Brooks,
2
There are no conflicts to declare.
(
Tetrahedron Lett., 1997, 38, 331; (g) A. I. Meyers and
F. Tavares, Tetrahedron Lett., 1994, 35, 2481;
Acknowledgements
(
2
2
h) X. Fernandez and E. Duñach, Tetrahedron: Asymmetry,
001, 12, 1279; (i) S. Kumar and R. Aggarwal, ARKIVOC,
018, 3, 354; ( j) A. N. Christ, L. Labzin, G. T. Bourne,
J. J. T. is grateful for the support of the National Natural
Science Foundation of China (21702013), the Beijing Natural
Science Foundation (2184115) and the Fundamental Research
Funds for the Central Universities (XK1802-6, buctrc201721) at
the BUCT. K. X. is grateful to the National Natural Science
Foundation of China (21602119 and U1504208).
H. Fukunishi, J. E. Weber, M. J. Sweet, M. L. Smythe and
J. U. Flanagan, J. Med. Chem., 2010, 53, 5536; (k) A. Okabe,
A. Ito, K. Okumura and C.-G. Shin, Chem. Lett., 2001, 5,
3
2
80; (l) K. Okumura, T. Suzuki and C.-G. Shin, Heterocycles,
000, 53, 765.
6
(a) R. Fan, B. Liu, T. Y. Zheng, K. Xu, C. Tan, T. L. Zeng,
S. S. Su and J. J. Tan, Chem. Commun., 2018, 54, 7081;
(b) T. Y. Zheng, J. J. Tan, R. Fan, S. S. Su, B. Liu, C. Tan and
K. Xu, Chem. Commun., 2018, 54, 1303; (c) H. Q. Wang,
J. Zhang, J. J. Tan, L. L. Xin, Y. P. Li, S. Zhang and K. Xu,
Org. Lett., 2018, 20, 2505; (d) J. J. Tan, T. Y. Zheng, Y. Q. Yu
and K. Xu, RSC Adv., 2017, 7, 15176; (e) J. J. Tan,
T. Y. Zheng, K. Xu and C. Y. Liu, Org. Biomol. Chem., 2017,
15, 4946; (f) J. J. Tan, B. Liu and S. S. Su, Org. Chem. Front.,
2018, 5, 3093.
Notes and references
1
J. A. Joule and K. Mills, Heterocyclic Chemistry, 5th edn,
Blackwell, Oxford, U.K., 2010.
2
(a) J. J. Li and O. Chemie, Heterocyclic chemistry in drug dis-
covery, John Wiley
& Sons, 2013; (b) T. J. Ritchie,
S. J. F. Macdonald, R. J. Young and S. D. Pickett, Drug
Discovery Today, 2011, 16, 164.
3
(a) N. M. Haste, W. Thienphrapa, D. N. Tran, S. Loesgen,
P. Sun, S. J. Nam, P. R. Jensen, W. Fenical, G. Sakoulas,
V. Nizet and M. E. Hensler, J. Antibiot., 2012, 65, 593;
7 (a) A. Behr, A. J. Vorholt, K. A. Ostrowski and
T. Seidensticker, Green Chem., 2014, 16, 982;
(b) H. Pellissier, Chem. Rev., 2013, 113, 442; (c) X. M. Zeng,
Chem. Rev., 2013, 113, 6864.
(
b) Y. Yu, L. Duan, Q. Zhang, R. J. Liao, Y. Ding, H. X. Pan,
E. W. Pienkowski, G. T. Tang, B. Shen and W. Liu, ACS
Chem. Biol., 2009, 4, 855; (c) K.-H. Yu, Recent Pat. Inflamm
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018