M. Moghadam et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2026–2030
Table 4. The results of [Mn(TPP)-PSI] catalyst recovery and the
2029
References and notes
manganese leached in the oxidation of 4-phenyl derivative of 1,4-
DHPs with sodium periodate
1. (a) Zamponi, G. W.; Stotz, S. C.; Staples, R. J.; Andro, T.
M.; Nelson, J. K.; Hulubei, V.; Blumenfeld, A.; Natale, N.
R. J. Med. Chem. 2003, 46, 87; (b) Visentin, S.; Rolando,
B.; Di Stilo, A.; Frutterro, R.; Novara, M.; Carbone, E.;
Roussel, C.; Vanthuyne, N.; Gasco, A. J. Med. Chem.
2004, 47, 2688; (c) Zarghi, A.; Sadeghi, H.; Fassihi, A.;
Faizi, M.; Shafiee, A. Farmaco 2003, 58, 1077; (d) Peri, R.;
Padmanabhan, S.; Rutledge, A.; Singh, S.; Triggle, D. J.
J. Med. Chem. 2000, 43, 2906.
Run
Time (min)
Yielda (%)
Mn leachedb (%)
1
2
3
4
40
40
40
40
96
95
94
94
0
0
0
0
a Isolated yield.
b Determined by atomic absorption spectroscopy.
2. Kharkar, P. S.; Desai, B.; Gaveria, H.; Varu, B.; Loriya,
R.; Naliapara, Y.; Shah, A.; Kulkarn, V. M. J. Med.
Chem. 2002, 45, 4858.
by expulsion of this substituent gave dealkylated pyri-
dine derivative (entry 12), which is previously reported
by Ortiz de Montellano in the oxidation of 1,4-dihydro-
pyrines by cytochrome P-450.46 This approach shows
that this synthetic model behaves as cytochrome P-450.
3. (a) Poindexter, G. S.; Bruce, M. A.; Breitenbucher, J. G.;
Higgins, M. A.; Sit, S.-Y.; Romine, J. L.; Martin, S. W.;
Ward, S. A.; McGovern, R. T.; Clarke, W.; Russell, J.;
Antal-Zimanyi, I. Bioorg. Med. Chem. 2004, 12, 507; (b)
Poinder, G. S.; Bruce, M. A.; LeBoulluec, K. L.; Monko-
vic, I.; Martin, S. W.; Parker, E. M.; Iben, L. G.;
McGovem, R. T.; Ortiz, A. A.; Stanley, J. A.; Mattson,
G. K.; Kozlowski, M.; Arcuri, M.; Zimanyi, I. A. Bioorg.
Med. Chem. Lett. 2002, 12, 379.
4. Klusa, V. Drugs Future 1995, 20, 135.
5. Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F.
Drugs Future 1992, 17, 465.
6. (a) McCormack, J. G.; Westergaard, N.; Kristiansen, M.;
Brand, C. L.; Lau, J. Curr. Pharm. Des. 2001, 7, 1457; (b)
Ogawa, A. K.; Willoughby, C. A.; Raynald, B.; Ellsworth,
K. P.; Geissler, W. M.; Myer, R. W.; Yao, J.; Georgianna,
H.; Chapman, K. T. Bioorg. Med. Chem. Lett. 2003, 13,
3405.
We also studied the recycling of the used Mn(TPP)Cl-
PSI in the repeated oxidation reactions. After the first
run, the polymer was recovered by filtration followed
by washing with water and acetonitrile, and reused.
The catalyst can be reused four consecutive times, with-
out loss of its activity. No manganese was detectable in
the filtrates by atomic absorption spectrometry (Table
4). The nature of the recovered catalyst has been fol-
lowed by IR and solid state UV. The results indicated
that the catalyst after reusing several times showed no
change in its IR and solid state UV spectra.
7. (a) Boer, R.; Gekeler, V. Drugs Future 1995, 20, 499; (b)
Sabitha, G.; Kiran Kumar Reddy, G. S.; Srinivas
Reddy, Ch.; Yadav, J. S. Tetrahedron Lett. 2003, 44,
4129.
8. Khadikar, B.; Borkat, S. Synth. Commun. 1998, 28, 207.
9. Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa,
A. J. Org. Chem. 1997, 62, 3582.
Comparison of this system with the previously reported
systems shows that the Mn(TPP)Cl-PSI/ NaIO4 catalytic
system has the following advantages: robustness of the
catalyst, mild reaction conditions, and reusability of
the catalyst without loss of its activity.
10. Balogh, M.; Hermecz, I.; Meszaros, Z.; Laszlo, P. Helv.
Chim. Acta 1984, 67, 2270.
11. Pfister, J. R. Synthesis 1990, 689.
12. Maquestiau, A.; Mayence, A.; Eynde, J. J. V. Tetrahedron
Lett. 1991, 32, 3839.
On the other hand, comparison of homogeneous
33
Mn(TPP)Cl/(n-Bu)4NIO4
with
heterogeneous
Mn(TPP)Cl-PSI/NaIO4 shows that reaction times and
yields are similar but the heterogeneous catalyst is a
robust and recoverable catalyst.
13. Eynde, J. J. V.; Delfosse, F.; Mayence, A.; Van Haver-
beke, Y. Tetrahedron 1995, 51, 6511.
14. Itoh, T.; Nagata, K.; Okada, M.; Ohsawa, A. Tetrahedron
Lett. 1995, 36, 2269.
15. Mashraqui, S. H.; Karnik, M. A. Synthesis 1998, 9, 713.
16. Eynde, J. J. V.; Mayence, A.; Maquestiau, A. Tetrahedron
1992, 48, 463.
17. Wang, B.; Hu, Y.; Hu, H. Synth. Commun. 1999, 29, 4193.
18. Sadeghi, M. M.; Mohammadpoor-Baltork, I.; Memarian,
H. R.; Sobhani, S. Synth. Commun. 2000, 30, 1661.
19. Mao, Y. Z.; Jin, M. Z.; Liu, Z. L.; Wu, L. M. Org. Lett.
2000, 2, 741.
20. Zolfigol, M. A.; Zebarjadian, M. H.; Sadeghi, M. M.;
Mohammadpoor-Baltork, I.; Memarian, H. R.; Shamsi-
pur, M. Synth. Commun. 2001, 31, 929.
21. Sadeghi, M. M.; Memarian, H. R.; Momeni, A. R. J. Sci.
Islamic Repub. Iran 2001, 12, 141.
22. Eynde, J. J. V.; Orazio, R. D.; Van Haverbeke, Y.
Tetrahedron 1994, 50, 2479.
23. Grinsteins, E.; Stankevice, B.; Duburs, G. Kim. Geter-
otsikl. Soedin 1976, 1118.
24. (a) Loev, B.; Goodman, M. M.; Snader, K. M.;
Tedeschi, R.; Macko, E. J. Med. Chem. 1986, 29,
1596; (b) Garcia, O.; Delgado, F. Tetrahedron Lett.
1993, 34, 623.
All materials were of commercial reagent grade. The tet-
raphenylporphyrin ligand (H2TPP) was prepared, meta-
lated, and supported according to the literature
procedures.45,47,48 All Hantzsch 1,4-dihydropyridines
were synthesized by the reported procedures.49 1H
NMR spectra were obtained with a Brucker AW80
(80 MHz) spectrometer.
All of the reactions were carried out at room tempera-
ture under air in a 25 mL flask equipped with a magnetic
stirrer bar. A solution of NaIO4 (2 mmol) in H2O
(10 mL) was added to a mixture of 1,4-dihydropyridines
(1 mmol), Mn(TPP)Cl-PSI (20 lmol) in CH3CN
(10 mL). The progress of reaction was monitored by
TLC until no starting material is detected by TLC. After
the reaction was completed, the reaction mixture was fil-
tered and the pyridine derivative was extracted with
CH2Cl2 (2· 20 mL). The pyridine derivatives were ob-
tained after evaporation of solvent. Further purification
1
was followed by silica gel plate. IR and H NMR spec-
tral data confirmed the identities of the products.