pounds could be synthesized through the formation of new
carbon-carbon bonds.3a,b,i,j Herein we describe that a rhodium/
chiral diene catalyst is highly effective for asymmetric 1,4-
addition of alkenyl[2-(hydroxymethyl)phenyl]dimethylsi-
lanes4,5 to â-silyl R,â-unsaturated ketones, providing a new
and useful method for the construction of chiral allylsilanes
in high yield and ee.
Table 1. Rhodium-Catalyzed Asymmetric 1,4-Addition of
(2-Propenyl)[2-(hydroxymethyl)phenyl]dimethylsilane (2a) to
(E)-4-Dimethylphenylsilyl-3-buten-2-one (1a)
In 2005, we reported a rhodium-catalyzed asymmetric 1,4-
addition of arylboronic acids to â-silyl R,â-unsaturated
carbonyl compounds for the synthesis of chiral organosilanes
and demonstrated that high yield and enantioselectivity could
be achieved by the use of a chiral diene ligand such as (R,R)-
Bn-bod*.6 On the basis of this study, we envisioned that the
use of alkenyl nucleophiles would lead to the formation of
enantio-enriched chiral allylsilanes. To implement this
strategy, because some alkenylboronic acids are known to
be unstable, we decided to focus on the employment of
alkenyl[2-(hydroxymethyl)phenyl]dimethylsilanes as the nu-
cleophile. Although these reagents are known to function as
nucleophiles in the rhodium-catalyzed 1,4-addition reactions,
their usage has been limited to the addition to simple R,â-
unsaturated ketones so far.5
entry
ligand
yield (%)
ee (%)a
1
2
3
4
5
(S,S)-Bn-bod*
(S,S)-Ph-bod*
(R)-binap
(R)-phosphoramidite
(R)-MeO-mop
96
96
10
54
<2
93
93
22
16
-
a ee was determined by chiral HPLC on a Chiralpak AS column with
hexane/2-propanol ) 98/2.
In an initial investigation, we examined the effect of ligand
by using â-dimethylphenylsilyl enone 1a as a model substrate
in the 1,4-addition of 2-propenylsilyl reagent 2a with 5 mol
% rhodium at 50 °C (Table 1). As was the case with the
addition of arylboronic acids,6 the use of chiral diene ligands
such as (S,S)-Bn-bod*7,8 and (S,S)-Ph-bod*7 gave the desired
1,4-adduct (3aa) in high yield and ee (96% yield, 93% ee;
Table 1, entries 1 and 2). In comparison, typical phosphorus-
based chiral ligands, such as (R)-binap,9 (R)-phosphoramid-
ite,10 and (R)-MeO-mop,11 turned out to be much less
effective, giving 3aa in lower yield and enantioselectivity
(Table 1, entries 3-5).
Under the conditions using (S,S)-Ph-bod* as a ligand, the
scope of the substrate and the nucleophile is illustrated in
Table 2. Thus, not only dimethylphenylsilyl group but also
other silyl groups such as the tert-butyldimethylsilyl group
can be employed at the â-position of the substrate (Table 2,
entry 2). With respect to the substituent adjacent to the car-
bonyl group, primary alkyl, secondary alkyl, and aryl groups
are all tolerated to give the corresponding allylsilanes in high
yield and enantioselectivity (88-95% yield, 92-97% ee;
Table 2, entries 3-5). In addition to 2-propenyl group,
various other alkenyl groups are also successfully installed
with high efficiency (90-98% yield, 91-94% ee; Table 2,
entries 6-10). Unfortunately, somewhat lower enantiose-
lectivity is observed by the use of a linear alkenyl nucleophile
under the present reaction conditions (Table 2, entry 11).
(4) (a) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J.
Am. Chem. Soc. 2005, 127, 6952. (b) Nakao, Y.; Sahoo, A. K.; Yada, A.;
Chen, J.; Hiyama, T. Sci. Technol. AdV. Mater. 2006, 7, 536. (c) Nakao,
Y.; Imanaka, H.; Chen, J.; Yada, A.; Hiyama, T. J. Organomet. Chem.
2007, 692, 585. (d) Nakao, Y.; Ebata, S.; Chen, J.; Imanaka, H.; Hiyama,
T. Chem. Lett. 2007, 606. (e) Nakao, Y.; Imanaka, H.; Chen, J.; Yada, A.;
Hiyama, T. J. Organomet. Chem. 2007, 692, 585. See also: (f) Hudrlik, P.
F.; Abdallah, Y. M.; Hudrlik, A. M. Tetrahedron Lett. 1992, 33, 6747. (g)
Hudrlik, P. F.; Arango, J. O.; Hijji, Y. M.; Okoro, C. O.; Hudrlik, A. M.
Can. J. Chem. 2000, 78, 1421.
(5) Nakao, Y.; Chen, J.; Imanaka, H.; Hiyama, T.; Ichikawa, Y.; Duan,
W.-L.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 9137.
(6) Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757.
(7) (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (b) Otomaru, Y.;
Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (c)
Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213. (d)
Shintani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 1294. (e) Shintani,
R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (f) Nishimura, T.;
Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979. (g) Shintani, R.; Duan,
W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628. (h) Tokunaga, N.;
Hayashi, T. AdV. Synth. Catal. 2007, 349, 513. (i) Duan, W.-L.; Imazaki,
Y.; Shintani, R.; Hayashi, T. Tetrahedron 2007, 63, 8529.
The absolute configuration of 1,4-adduct 3ea (Table 2,
entry 5) was determined as shown in Scheme 1. Thus,
Scheme 1. Derivatization of Compound 3ea
(8) (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi,
T. J. Am. Chem. Soc. 2005, 127, 54. (b) Shintani, R.; Tsurusaki, A.;
Okamoto, K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. (c)
Hayashi, T.; Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005,
1480. (d) Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341. (e)
Nishimura, T.; Katoh, T.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46,
4937.
(9) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.;
Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
(10) (a) Boiteau, J.-G.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem.
2003, 68, 9481. (b) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(11) (a) Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem.
1993, 58, 1945. (b) Hayashi, T. Acc. Chem. Res. 2000, 33, 354.
4644
Org. Lett., Vol. 9, No. 22, 2007