Macromolecules
Note
Table 4. Photovoltaic Properties of the Solar Cells Based on
P1 and P2
ACKNOWLEDGMENTS
■
This work was supported by the “100 Talents Program” of the
Chinese Academy of Sciences. Funding from Suzhou Jiahong
Optoelectronics and the Ministry of Science and Technology of
China are greatly appreciated. We thank Professor Jinsong Zhu
for gifting a MBRAUN glovebox and Professor Zhong Zhang
for providing lab space. We also thank Professor Jianhui Hou
for his kind assistance in EQE measurements.
polymer polymer:PC61BM Voc (V) Jsc (mA/cm2) FF (%) PCE (%)
P1
1:1
0.91
0.87
0.89
0.95
0.93
0.92
4.03
4.75
5.23
6.64
6.66
6.56
42
45
37
55
60
59
1.79
2.18
1.99
4.02
4.33
4.04
1:1.5
1:2
P2
1:1
1:1.5
1:2
REFERENCES
■
while for P2/PC61BM film from 3.85 to 2.48 nm, indicating the
film morphology for P1/PC61BM film is more sensitive to
thermal treatment. The molecular weight difference and
structure difference could be responsible for this.
Figure 5 shows external quantum efficiency (EQE) curves for
the solar cells based on P1 and P2. P1 device shows two
(1) (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J.
Science 1995, 270, 1789. (b) Coakley, K. M.; Mcgehee, M. D. Chem.
Mater. 2004, 16, 4533. (c) Scharber, M. C.; Muhlbacher, D.; Koppe,
M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater.
2006, 18, 789. (d) Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil,
J. Chem. Rev. 2004, 104, 4971. (e) Cheng, Y. J.; Yang, S. H.; Hsu, C. S.
Chem. Rev. 2009, 109, 5868.
̈
(2) (a) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.;
Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. (b) Ma, W. L.; Yang, C.
Y.; Gong, X.; Lee, K. H.; Heeger, A. J. Adv. Funct. Mater. 2005, 15,
1617.
(3) Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F.
J. Am. Chem. Soc. 2006, 128, 4911.
(4) (a) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M.
J. Am. Chem. Soc. 2008, 130, 732. (b) Sun, Y.; Chien, S. -C.; Yip, H. -L.;
Zhang, Y.; Chen, K. -S.; Zeigler, D. F.; Chen, F. -C.; Lin, B.; Jen, A. K. -Y.
J. Mater. Chem. 2011, 21, 13247. (c) Zhang, Y.; Chien, S. -C.; Chen, K. -S.;
Yip, H. -L.; Sun, Y.; Davies, J. A.; Chen, F. -C.; Jen, A. K. -Y. Chem.
Commun. 2011, 47, 11026. (d) Adam, G.; Pivrikas, A.; Ramil, A. M.;
Tadesse, S.; Yohannes, T.; Sariciftci, N. S.; Egbe, D. A. M. J. Mater.
Chem. 2011, 21, 2594. (e) Susarova, D. K.; Khakina, E. A.; Troshin, P.
A.; Goryachev, A. E.; Sariciftci, N. S.; Razumov, V. F.; Egbe, D. A. M.
J. Mater. Chem. 2011, 21, 2356. (f) Xin, H.; Guo, X.; Kim, F. S.; Ren,
G.; Watson, M. D.; Jenekhe, S. A. J. Mater. Chem. 2009, 19, 5303.
(g) Wu, P. -T.; Bull, T.; Kim, F. S.; Luscombe, C. K.; Jenekhe, S. A.
Macromolecules 2009, 42, 671. (h) Ong, K. -H.; Lim, S. -L.; Tan, H. -S.;
Wong, H. -K.; Li, J.; Ma, Z.; Moh, L. C. H.; Lim, S. -H.; de Mello, J. C.;
Chen, Z. -K. Adv. Mater. 2011, 23, 1409. (i) Hong, Y. -R.; Wong, H. -K.;
Moh, L. C. H.; Tan, H. -S.; Chen, Z. -K. Chem. Commun. 2011, 47,
4920. (j) Duan, C. H.; Chen, K. S.; Huang, F.; Yip, -H. L.; Liu, S. J.;
Zhang, J.; Jen, A. K. -Y.; Cao, Y. Chem. Mater. 2010, 22, 6444.
(k) Duan, C. H.; Cai, W. Z.; Huang, F.; Zhang, J.; Wang, M.; Yang, T.
B.; Zhong, C. M.; Gong, X.; Cao, Y. Macromolecules 2010, 43, 5262.
(5) (a) Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li,
G.; Yu, L. P. J. Am. Chem. Soc. 2009, 131, 56. (b) Liang, Y. Y.; Feng, D.
Q.; Wu, Y.; Tsai, S. T.; Li, G.; Ray, C.; Yu, L. P. J. Am. Chem. Soc.
2009, 131, 7792. (c) Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Chen, R.
I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586.
(d) Liang, Y. Y.; Yu, L. P. Acc. Chem. Res. 2010, 43, 1277. (e) Liang, Y.
Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. Adv.
Mater. 2010, 22, 135. (f) Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang,
Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat. Photonics
2009, 3, 649.
Figure 5. EQE curves for the devices based on P1 and P2.
maxima at 400 and 560 nm, respectively, and P2 device shows
two maxima at 380 and 580 nm, respectively. P2 device exhibits
higher EQE than that of P1, which is due to stronger sunlight
absorption of P2 film (see Figure 2b).
In summary, we have synthesized two new low bandgap
D−A copolymers with benzo[1,2-b:4,5-c′]dithiophene-4,8-
dione as the acceptor unit. The polymers possess good light-
absorption properties, thermal stability, and deep HOMO levels
(−5.49 eV and −5.33 eV) due to the strong electron-
withdrawing effect of BDTD unit. Solar cells based on these
polymers give good PCEs and high Voc indicating that BDTD is
a potential building block for conjugated polymer donors.
Further modification of the chemical structure of the polymer
to redshift the light-absorption is currently underway.
(6) Cui, C. H.; Fan, X.; Zhang, M. J.; Zhang, J.; Min, J.; Li, Y. F.
Chem. Commun. 2011, 47, 11345.
ASSOCIATED CONTENT
(7) (a) Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49,
3382. (b) Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J.
J.; Pomerantz, W. J. J. Chem. Soc., Chem. Commun. 1992, 1672.
(8) (a) Hou, J. H.; Park, M. H.; Zhang, S. Q.; Yao, Y.; Chen, L. M.;
Li, J. H.; Yang, Y. Macromolecules 2008, 41, 6012. (b) Zhang, G. B.; Fu,
Y. Y.; Zhang, Q.; Xie, Z. Y. Chem. Commun. 2010, 46, 4997.
(9) (a) Huo, L. J.; Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Jiang, Y.;
Chen, T. L.; Yang, Y. Macromolecules 2009, 42, 6564. (b) Hou, J. H.;
Chen, H. Y.; Zhang, S. Q.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130,
16144.
■
S
* Supporting Information
Synthetic procedures, NMR spectra, and AFM images. This material
AUTHOR INFORMATION
■
Corresponding Author
Notes
(10) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008,
The authors declare no competing financial interest.
47, 58.
1713
dx.doi.org/10.1021/ma202578y | Macromolecules 2012, 45, 1710−1714