M. Okudomi et al. / Tetrahedron Letters 48 (2007) 8540–8543
8543
References and notes
8. (a) Veronese, F. M.; Morpurgo, M. Il Farmaco 1999, 54,
4
7
97–516; (b) Greenwald, R. B. J. Controlled Release 2001,
4, 159–171; (c) Vincent, M. J.; Duncan, R. Trends
1
. (a) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in
Organic Synthesis; Wiley-VCH: Weinheim, 1999; (b)
Bommarius, A. S.; Riebel, B. R. Biocatalysis; Wiley-
VCH: Weinheim, 2004; (c) Faber, K. Biotransformations in
Organic Chemistry: A Textbook, 5th ed.; Springer: Berlin–
Heidelberg–New York, 2004; (d) Ghanem, A.; Aboul-
Enein, H. Y. Chirality 2004, 17, 1–15; (e) Garcia-Uradales,
E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313–354;
Biotechnol. 2006, 24, 39–47.
. L o´ pez-Pelegr ´ı n, J. A.; Wentworth, P., Jr.; Sieber, F.; Metz,
W. A.; Janda, K. D. J. Org. Chem. 2000, 65, 8527–8531.
0. (a) Shimojo, M.; Matsumoto, K.; Nogawa, M.; Nemoto,
Y.; Ohta, H. Tetrahedron Lett. 2004, 45, 6769–6773; (b)
Nogawa, M.; Shimojo, M.; Matsumoto, K.; Okudomi,
M.; Nemoto, Y.; Ohta, H. Tetrahedron 2006, 62, 7300–
9
1
7
306.
(
f) Bornscheuer, U. T. Trends and Challenge in Enzyme
1
1. The synthetic method of the imidazolide (± )-4 has already
Technology; Springer: Berlin/Heidelberg, 2005; (g)
Fogassy, E.; N o´ gr a´ di, M.; Kozma, D.; Egri, G.; P a´ lovics,
E.; Kiss, V. Org. Biomol. Chem. 2006, 4, 3011–3030; (h)
Gadler, P.; Faber, K. Trends Biotechnol. 2007, 25, 83–88;
1
0
1
been reported. Compound 1: H NMR (500 MHz,
CDCl ) d 1.59 (d, J = 6.5 Hz, 3H), 3.38 (s, 3H, CH O–
3
3
PEG), 3.50 (t, J = 5.0 Hz, 2H), 3.55 (t, J = 4.5 Hz, 2H),
.57–3.68 (m, PEG–methylenes), 3.70 (t, J = 4.5 Hz, 2H,
PEG), 3.78 (t, J = 5.0 Hz, 2H), 4.23 (td, J = 4.5 Hz,
J = 12.0 Hz, 1H), 4.28 (td, J = 5.0 Hz, J = 12.0 Hz, 1H),
3
(
i) Ghanem, A. Tetrahedron 2007, 63, 1721–1754.
2
3
. For representative techniques, see: (a) Terao, Y.; Tsuji, K.;
Murata, M.; Achiwa, K.; Nishio, T.; Watanabe, N.; Seto,
K. Chem. Pharm. Bull. 1989, 37, 1653–1655; (b) Yamano,
T.; Kikumoto, F.; Yamamoto, S.; Miwa, K.; Kawada, M.;
Ito, T.; Ikemoto, T.; Tomimatsu, K.; Mizuno, Y. Chem.
Lett. 2000, 448–449; (c) Beier, P.; O’Hagan, D. Chem.
Commun. 2002, 1680–1681; (d) Luo, Z.; Swaleh, S. M.;
Theil, F.; Curran, D. P. Org. Lett. 2002, 4, 2585–2587.
. For enzymatic transesterification of esters with PEG as a
nucleophile, see: (a) Wallace, J. S.; Reda, K. B.; Williams,
M. E.; Morrow, C. J. J. Org. Chem. 1990, 55, 3544–3546;
1
2
1
2
1
3
5
(
7
2
.72 (q, J = 6.5 Hz, 1H), 7.23–7.39 (m, 5H); C NMR
125 MHz, CDCl ) d 22.2, 58.8, 66.7, 68.7, 70.37, 70.40,
0.6, 71.7, 76.3, 125.9, 127.9, 128.3, 140.8, 154.3; IR (KBr)
3
ꢀ
1
887, 1744, 1636, 1466, 1342, 1281, 1113, 964, 843 cm
.
1
2. The yields of the MPEG-supported compounds were
based on the weights of the starting materials. The purities
1
were determined by a H NMR analysis, and the terminal
methyl group and/or the PEG–methylenes were used as
the reference. The purities of the substrates 1, 2a, 2b, and
2
c were ca. 91%, 94%, 89%, and 93%, respectively. The
(
2
b) Whalen, L. J.; Morrow, C. J. Tetrahedron: Asymmetry
000, 11, 1279–1288.
detail of the synthetic procedure of the substrates will be
reported separately.
4
5
6
. For enzyme-mediated kinetic resolution of carboxylic
acids anchored on polystyrene based resin, see: Nanda,
S.; Rao, B.; Yadav, J. S. Tetrahedron Lett. 1999, 40, 5905–
1
3. Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am.
Chem. Soc. 1982, 104, 7294–7299.
4. The ee of 3 was determined by GLC analysis, and a
similar analysis of 3 derived from 1 was also performed.
GLC conditions: column, CP-Cyclodextrin-B-236-M19
1
5
908.
. For lipase-catalyzed kinetic resolution with poly(acryl-
amide)ethylene glycol (PEGA)-based resin as a nucleo-
phile, see: Ulijn, R. V.; Bisek, N.; Flitsch, S. L. Org.
Biomol. Chem. 2003, 1, 621–622.
(
Chrompack), 0.25 mm · 50 m; injection, 160 ꢁC; detec-
tion, 160 ꢁC; oven, 140 ꢁC; carrier gas, He; head pressure,
2
2
.4 kg/cm ; retention time, 8.9 (R) and 9.2 (S) min.
. (a) Gravert, D. J.; Janda, K. D. Chem. Rev. 1997, 97, 489–
1
5. For the reaction of a methyl carbonate of (± )-3 under the
same conditions, the reaction scarcely proceeded. On the
other hand, an acetate of (± )-3 was slowly hydrolyzed
5
1
09; (b) Wentworth, P.; Janda, K. D. Chem. Commun.
999, 1917–1924; (c) Dickerson, T. J.; Reed, N. N.; Janda,
K. D. Chem. Rev. 2002, 102, 3325–3344; (d) Bergbreiter,
D. E. Chem. Rev. 2002, 102, 3345–3384.
(
conv. = 0.11) without any enantioselectivity. The hydro-
lysis of a methyl carbonate of (± )-10 was also proceeded
with very low enantioselectivity (E value = 1.4).
7
. (a) Benaglia, M.; Celentano, G.; Cozzi, F. Adv. Synth.
Catal. 2001, 343, 171–173; (b) Pozzi, G.; Cavazzini, M.;
Quici, S.; Benaglia, M.; Dell’Anna, G. Org. Lett. 2004, 6,
1
0
1
1
6. The reaction was also performed using 3.6 g of the
substrate (± )-2b. In this case, we finally obtained
4
41–443; (c) Oikawa, M.; Tanaka, T.; Kusumoto, S.;
1
D
8
(
R)-3 (98% ee, ½aꢁ +32.8 (c 0.96, MeOH)) in 12%
Sasaki, M. Tetrahedron Lett. 2004, 45, 787–790; (d) Reed,
N. N.; Dickerson, T. J.; Boldt, G. E.; Janda, K. D. J. Org.
Chem. 2005, 70, 1728–1731; (e) Li, J.-H.; Hu, X.-C.;
Liang, Y.; Xie, Y.-X. Tetrahedron 2006, 62, 31–38; (f)
Hong, S. H.; Grubbs, R. H. Org. Lett. 2007, 9, 1955–1957.
2
D
5
and (S)-3 (58% ee, ½aꢁ ꢀ21.0 (c 1.06, MeOH)) in 46%
1
7
isolated yields (conv. = 0.37, E value = 179).
7. Laumen, K.; Schneider, M. P. J. Chem. Soc., Chem.
Commun. 1988, 598–600.