1654ꢀ
JiayingꢀCaiꢀetꢀal.ꢀ/ꢀChineseꢀJournalꢀofꢀCatalysisꢀ35ꢀ(2014)ꢀ1653–1660ꢀ
Inꢀ ourꢀ previousꢀ study,ꢀ weꢀ foundꢀ thatꢀ gold‐basedꢀ catalystsꢀ
Tableꢀ1ꢀ ꢀ
areꢀ effectiveꢀ forꢀ alcoholꢀ oxidationꢀ [23].ꢀ Moreover,ꢀ weꢀ haveꢀ
successfullyꢀencapsulatedꢀ1‐nmꢀAuꢀnanoclustersꢀinꢀtheꢀsuper‐
CatalyticꢀoxidationꢀofꢀglycerolꢀoverꢀAuꢀcatalystsꢀwithꢀdifferentꢀsupports.
D
Au
ꢀ
Conversionꢀ
Productꢀyieldꢀ(%)ꢀ
TARACꢀ OXALA Others
Catalystꢀ
Au/ACꢀ
cageꢀ ofꢀ HYꢀ zeolite.ꢀ Au/HYꢀ showedꢀ highꢀ efficiencyꢀ inꢀ 5‐
ꢀ
hy‐
(nm)
15ꢀ
10ꢀ
ꢀ 6ꢀ
ꢀ 2ꢀ
ꢀ 1ꢀ
(%)ꢀ
90ꢀ
98ꢀ
98ꢀ
99ꢀ
98ꢀ
ꢀ 4ꢀ
GLYAꢀ
80ꢀ
ꢀ 2ꢀ
26ꢀ
ꢀ 5ꢀ
droxymethyl‐2‐furfuralꢀ oxidation,ꢀ achievingꢀ 99%ꢀ yieldꢀ ofꢀ 2,5‐
ꢀ
ꢀ 6ꢀ
24ꢀ
43ꢀ
69ꢀ
80ꢀ
ꢀ 0ꢀ
ꢀ 2ꢀ
55ꢀ
ꢀ 4ꢀ
ꢀ 6ꢀ
12ꢀ
ꢀ 0ꢀ
ꢀ 2ꢀ
17ꢀ
25ꢀ
19ꢀ
ꢀ 3ꢀ
ꢀ 0ꢀ
Au/CeO
Au/NaYꢀ
Au/REYꢀ
Au/HYꢀ
HYꢀ
2
ꢀ
furandicarboxylicꢀacidꢀ[24].ꢀInꢀthisꢀstudy,ꢀinspiredꢀbyꢀitsꢀexcel‐
lentꢀ performanceꢀ inꢀ convertingꢀ hydroxylꢀ groupsꢀ toꢀ carboxylꢀ
groups,ꢀweꢀinvestigatedꢀsupportedꢀAuꢀcatalystsꢀforꢀtheꢀoxida‐
tionꢀofꢀglycerol.ꢀWeꢀcomparedꢀtheꢀcatalyticꢀperformanceꢀofꢀAuꢀ
onꢀdifferentꢀsupports,ꢀinvestigatedꢀtheꢀoxidationꢀpathway,ꢀandꢀ
exploredꢀtheꢀconversionꢀprocessꢀofꢀGLYAꢀtoꢀTARAC.ꢀ ꢀ
ꢀ 3ꢀ
ꢀ 4ꢀ
—ꢀ
2
Reactionꢀconditions:ꢀ0.23ꢀgꢀglycerolꢀinꢀ4.6ꢀgꢀH O,ꢀ0.4ꢀgꢀNaOH,ꢀ0.3ꢀgꢀcata‐
2
lystꢀ(1.5ꢀwt%ꢀAu),ꢀ60ꢀ°C,ꢀ p(O )=ꢀ0.3ꢀMPa,ꢀ9ꢀh,ꢀtheꢀAu/glycerolꢀmolarꢀ
ratioꢀ1/150.ꢀ
GLYA:ꢀGlycericꢀacid;ꢀTARAC:ꢀTartronicꢀacid;ꢀOXALA:ꢀOxalicꢀacid.ꢀ
2.ꢀ ꢀ Experimentalꢀ
2
.1.ꢀ ꢀ Catalystꢀpreparationꢀandꢀcharacterizationꢀ
niedꢀbyꢀC–CꢀcleavageꢀwithꢀformicꢀacidꢀandꢀOXALAꢀasꢀtheꢀdeg‐
radationꢀproducts.ꢀInꢀtheꢀcaseꢀofꢀAu/AC,ꢀglycerolꢀwasꢀefficientlyꢀ
oxidizedꢀtoꢀGLYAꢀwithꢀ80%ꢀyield,ꢀbutꢀtheꢀyieldꢀofꢀTARACꢀwasꢀ
lowꢀ(6%),ꢀwhichꢀisꢀconsistentꢀwithꢀpreviousꢀstudiesꢀthatꢀGLYAꢀ
wasꢀ theꢀ mainꢀ productꢀ overꢀ Au/ACꢀ [16].ꢀ Forꢀ theꢀ Au/HY,ꢀ
Au/REY,ꢀ andꢀ Au/NaYꢀ catalysts,ꢀ thereꢀ wasꢀ aꢀ higherꢀ yieldꢀ ofꢀ
Theꢀcatalystsꢀwereꢀpreparedꢀbasedꢀonꢀtheꢀmethodsꢀinꢀourꢀ
previousꢀworkꢀ[24].ꢀAꢀcertainꢀamountꢀofꢀsupportꢀwasꢀaddedꢀtoꢀ
HAuCl ꢀaqueousꢀsolutionꢀ(50ꢀmL,ꢀ0.1ꢀmol/L).ꢀAfterꢀstirringꢀatꢀ
0ꢀ°Cꢀforꢀ2ꢀh,ꢀsodiumꢀcitrateꢀsolutionꢀwasꢀadded.ꢀTheꢀobtainedꢀ
4
6
mixtureꢀ wasꢀ stirredꢀ forꢀ anotherꢀ 2ꢀ h.ꢀ Afterꢀ centrifugationꢀ andꢀ
washingꢀwithꢀdistilledꢀwater,ꢀtheꢀsampleꢀwasꢀtreatedꢀatꢀ100ꢀ°Cꢀ
TARACꢀ thanꢀ forꢀ theꢀ Au/ACꢀ andꢀ Au/CeO ꢀ catalysts.ꢀ Goldꢀ
2
nanoclustersꢀonꢀHYꢀzeoliteꢀhadꢀextremelyꢀhighꢀactivity,ꢀachiev‐
ingꢀ98%ꢀconversionꢀwithꢀ80%ꢀyieldꢀofꢀTARAC.ꢀHowever,ꢀtheꢀHYꢀ
supportꢀaloneꢀonlyꢀhadꢀveryꢀlowꢀactivity.ꢀOverꢀtheꢀAu/REYꢀcat‐
alyst,ꢀ90%ꢀconversionꢀwithꢀ69%ꢀyieldꢀofꢀTARACꢀwasꢀachieved,ꢀ
andꢀAu/NaYꢀonlyꢀgaveꢀ43%ꢀyieldꢀofꢀTARAC.ꢀ ꢀ
inꢀH ꢀatmosphereꢀ(0.1ꢀMPa)ꢀforꢀ6ꢀh.ꢀTheꢀAuꢀloadingꢀforꢀtheseꢀ
2
catalystsꢀwasꢀ1.5ꢀwt%.ꢀ ꢀ
Transmissionꢀelectronꢀmicroscopyꢀ(TEM)ꢀstudiesꢀwereꢀper‐
formedꢀinꢀaꢀFEIꢀTecnaiꢀG2ꢀF30ꢀS‐Twinꢀelectronꢀmicroscope.ꢀTheꢀ
real‐timeꢀ inꢀ situꢀ Fourierꢀ transformꢀ infraredꢀ spectroscopyꢀ
AsꢀshownꢀinꢀFig.ꢀ1,ꢀtheꢀAuꢀparticleꢀsizeꢀvariesꢀimmenselyꢀonꢀ
(FT‐IR)ꢀmeasurementsꢀwereꢀcarriedꢀoutꢀwithꢀaꢀMettlerꢀToledoꢀ
differentꢀsupports.ꢀForꢀACꢀandꢀCeO ꢀsupports,ꢀAuꢀparticlesꢀhadꢀ
2
ReactIRꢀ 45mꢀ spectrometer.ꢀ Anꢀ Infraredꢀ Associatesꢀ liquidꢀ ni‐
trogen‐cooledꢀ AgXꢀ fiberꢀ conduitꢀ diamond‐attenuatedꢀ totalꢀ re‐
flectionꢀprobeꢀwasꢀused.ꢀ
averageꢀ sizesꢀ ofꢀ 15ꢀ andꢀ 10ꢀ nm,ꢀ respectively.ꢀ Theirꢀ differentꢀ
catalyticꢀ performanceꢀ mayꢀ beꢀ attributedꢀ toꢀ theꢀ differencesꢀ inꢀ
C–Cꢀcleavageꢀactiveꢀsitesꢀonꢀtheꢀsupportsꢀandꢀtheꢀmetalꢀsupportꢀ
interaction.ꢀForꢀAu/HY,ꢀtheꢀAuꢀnanoclustersꢀhadꢀaꢀsizeꢀaroundꢀ
1ꢀnm,ꢀwhichꢀhasꢀbeenꢀdemonstratedꢀbyꢀdetailedꢀcharacteriza‐
tionsꢀ inꢀ ourꢀ previousꢀ studyꢀ [24].ꢀ Itꢀ seemsꢀ thatꢀ theꢀ yieldꢀ ofꢀ
TARACꢀincreasedꢀfromꢀ43%ꢀtoꢀ80%ꢀwhenꢀtheꢀAuꢀnanoparticleꢀ
sizeꢀdecreasedꢀfromꢀ6ꢀtoꢀ1ꢀnm.ꢀTheseꢀresultsꢀsuggestꢀthatꢀtheꢀ
formationꢀofꢀTARACꢀcanꢀbeꢀsignificantlyꢀincreasedꢀbyꢀdecreas‐
ingꢀ theꢀ Auꢀ particleꢀ size.ꢀ Therefore,ꢀ theꢀ smallꢀ sizeꢀ ofꢀ theꢀ Auꢀ
nanoclustersꢀ isꢀ theꢀ mainꢀ reasonꢀ forꢀ theꢀ formationꢀ ofꢀ TARACꢀ
whenꢀchoosingꢀYꢀtypeꢀzeoliteꢀasꢀsupport.ꢀ
2.2.ꢀ ꢀ Glycerolꢀoxidationꢀandꢀproductꢀanalysisꢀ ꢀ
Aꢀ typicalꢀ reactionꢀ procedureꢀ wasꢀ asꢀ follows.ꢀ Glycerolꢀ (2.5ꢀ
mmol),ꢀ H Oꢀ (4.6ꢀ g),ꢀ NaOHꢀ (0.4ꢀ g),ꢀ andꢀ catalystꢀ (0.3ꢀ g,ꢀ 0.023ꢀ
2
mmol)ꢀ wereꢀ addedꢀ intoꢀ theꢀ autoclave.ꢀ Theꢀ autoclaveꢀ wasꢀ
chargedꢀwithꢀdioxygenꢀ(0.3ꢀMPa),ꢀmaintainedꢀatꢀ60ꢀ°Cꢀforꢀ9ꢀh,ꢀ
andꢀthenꢀcooled.ꢀTheꢀreactionꢀmixtureꢀwasꢀacidifiedꢀandꢀana‐
lyzedꢀbyꢀhigh‐performanceꢀliquidꢀchromatographyꢀ(HPLC)ꢀonꢀaꢀ
Watersꢀ2695ꢀsystem.ꢀ ꢀ
3.2.ꢀ ꢀ Reactionꢀcourseꢀandꢀproposedꢀcatalyticꢀrouteꢀ
3.ꢀ ꢀ Resultsꢀandꢀdiscussionꢀ
Inꢀtheꢀreaction,ꢀTARACꢀmayꢀbeꢀproducedꢀeitherꢀbyꢀtheꢀcon‐
3
.1.ꢀ ꢀ Catalyticꢀperformanceꢀ ꢀ
secutiveꢀreactionꢀinꢀwhichꢀglycerolꢀisꢀfirstꢀconvertedꢀtoꢀGLYAꢀ
andꢀthenꢀtoꢀTARAC,ꢀorꢀbyꢀparallelꢀreactionsꢀwhereꢀtwoꢀhydrox‐
ylꢀgroupsꢀareꢀsimultaneouslyꢀoxidizedꢀandꢀglycerolꢀisꢀdirectlyꢀ
transformedꢀ toꢀ TARACꢀ inꢀ oneꢀ step.ꢀ Forꢀ theꢀ Au/ACꢀ catalyst,ꢀ
glycerolꢀwasꢀefficientlyꢀoxidizedꢀtoꢀGLYAꢀwithꢀproductionꢀofꢀaꢀ
smallꢀamountꢀofꢀTARACꢀ(Tableꢀ1).ꢀMoreover,ꢀglycerolꢀoxidationꢀ
overꢀ Au/HYꢀ showedꢀ 10%ꢀ yieldꢀ ofꢀ GLYA.ꢀ Itꢀ isꢀ proposedꢀ thatꢀ
GLYAꢀmayꢀbeꢀtheꢀintermediateꢀsubstance.ꢀToꢀstudyꢀtheꢀprocess,ꢀ
theꢀinfluenceꢀofꢀreactionꢀtimeꢀonꢀtheꢀcatalyticꢀperformanceꢀofꢀ
Au/HYꢀwasꢀinvestigated.ꢀAsꢀshownꢀinꢀFig.ꢀ2(a),ꢀtheꢀconversionꢀ
ofꢀglycerolꢀincreasedꢀwithꢀtimeꢀandꢀreachedꢀ98%ꢀafterꢀ3ꢀh.ꢀTheꢀ
yieldꢀofꢀGLYAꢀincreasedꢀinꢀtheꢀinitialꢀ2ꢀhꢀandꢀreachedꢀaꢀmaxi‐
mumꢀ valueꢀ ofꢀ 38%.ꢀ Thenꢀ theꢀ amountꢀ ofꢀ GLYAꢀ graduallyꢀ de‐
Initially,ꢀweꢀemployedꢀAuꢀcatalystsꢀwithꢀdifferentꢀsupportsꢀ
(CeO
2
,ꢀ activatedꢀ carbonꢀ (AC),ꢀ HY,ꢀ REY,ꢀ andꢀ NaY)ꢀ onꢀ glycerolꢀ
oxidationꢀreactionꢀatꢀ60ꢀ°Cꢀunderꢀ0.3ꢀMPaꢀO
2
ꢀinꢀwater.ꢀAsꢀtheꢀ
reactionsꢀwereꢀconductedꢀinꢀalkalineꢀsolution,ꢀtheꢀfinalꢀprod‐
uctsꢀ wereꢀ inꢀ theꢀ formꢀ ofꢀ glycerate,ꢀ tartronate,ꢀ andꢀ oxalate.ꢀ
Thus,ꢀacidificationꢀtoꢀtheꢀcarboxylicꢀacidꢀformꢀwasꢀrequiredꢀforꢀ
analysis.ꢀ Theꢀ catalystsꢀ hadꢀ remarkablyꢀ differentꢀ performanceꢀ
forꢀglycerolꢀoxidationꢀ(Tableꢀ1).ꢀWhenꢀgoldꢀwasꢀsupportedꢀonꢀ
CeO ,ꢀitꢀgaveꢀ98%ꢀconversion.ꢀHowever,ꢀtheꢀmainꢀproductꢀwasꢀ
oxalicꢀ acidꢀ (OXALA,ꢀ 55%ꢀ yield),ꢀ andꢀ theꢀ yieldꢀ ofꢀ TARACꢀ wasꢀ
onlyꢀ24%,ꢀsuggestingꢀthatꢀtheꢀoxidationꢀprocessꢀwasꢀaccompa‐
2