PMR spectrum (400 MHz, DMSO-d , δ, ppm, J/Hz): 12.6 (1H, br.s, 5-OH), 10.9 (1H, br.s, 7-OH), 10.2 (1H, br.s,
6
4′-OH), 8.05 (2H, d, J = 7.2, H-2′,6′), 6.89 (2H, d, J = 7.2, H-3′,5′), 6.46 (1H, d, J = 2.0, H-8), 6.23 (1H, d, J = 2.0, H-6), 5.47
(1H, d, J = 7.6, H-1″), 3.07-3.58 (sugar protons).
13
C NMR spectrum (400 MHz, DMSO-d , δ, ppm): 156.1 (C-2), 133.1 (C-3), 177.3 (C-4), 160.8 (C-5), 98.4 (C-6),
6
163.8 (C-7), 93.5 (C-8), 156.3 (C-9), 103.9 (C-10), 120.8 (C-1′), 130.8 (C-2′,6′), 115.0 (C-3′,5′), 159.7 (C-4′), 100.6 (C-1″),
74.0 (C-2″), 76.1 (C-3″), 69.6 (C-4″), 77.3 (C-5″), 60.6 (C-6″). Acid hydrolysis of 5 gave kaempferol and glucose [4].
Hyperoside (6), light yellow powder (MeOH), mp 234-236°C. UV spectrum (λ , MeOH, nm): 257, 305sh, 361;
max
+AlCl : 275, 342sh, 434; +AlCl /HCl: 269, 300sh, 368sh, 404.
3
3
PMR spectrum (400 MHz, DMSO-d , δ, ppm, J/Hz): 12.6 (1H, s, 5-OH), 7.66 (1H, d, J = 8.4, H-6′), 7.54 (1H, br.s,
6
H-2′), 6.82 (1H, d, J = 8.4, H-5′), 6.42 (1H, br.s, H-8), 6.21 (1H, br.s, H-6), 5.37 (1H, d, J = 7.6, H-1″), 3.26-3.64 (sugar
protons).
13
C NMR spectrum (400 MHz, DMSO-d , δ, ppm): 156.1 (C-2), 133.4 (C-3), 177.3 (C-4), 160.8 (C-5), 98.5 (C-6),
6
163.9 (C-7), 93.4 (C-8), 156.2 (C-9), 103.7 (C-10), 121.0 (C-1′), 115.0 (C-2′), 144.5 (C-3′), 148.1 (C-4′), 115.7 (C-5′), 121.9
(C-6′), 101.6 (C-1″), 70.9 (C-2″), 72.9 (C-3″), 67.4 (C-4″), 75.6 (C-5″), 59.9 (C-6″). Acid hydrolysis of 6 produced quercetin
and galactose [2].
Kaempferol-3-O-(2 -O-β-D-glycopyranosyl)-β-D-glucopyranoside (7), yellow powder (MeOH), mp 234-235°C.
UV spectrum (λ , MeOH, nm): 266, 300sh, 350; +AlCl : 275, 304sh, 350sh, 396; +AlCl /HCl: 275, 302sh, 346sh, 395.
3
3
max
PMR spectrum (400 MHz, DMSO-d , δ, ppm, J/Hz): 12.6 (1H, br.s, 5-OH), 8.04 (2H, d, J = 7.2, H-2′,6′), 6.91 (2H,
6
d, J = 7.2, H-3′,5′), 6.40 (1H, d, J = 2.0, H-8), 6.16 (1H, d, J = 2.0, H-6), 5.69 (1H, d, J = 7.6, H-1″), 4.61 (1H, d, J = 8.0, H-1″),
3.04-3.67 (sugar protons).
13
C NMR spectrum (400 MHz, DMSO-d , δ, ppm): 156.3 (C-2), 132.7 (C-3), 177.1 (C-4), 160.8 (C-5), 98.7 (C-6),
6
164.0 (C-7), 93.6 (C-8), 155.2 (C-9), 103.8 (C-10), 120.9 (C-1′), 130.8 (C-2′), 115.1 (C-3′), 159.6 (C-4′), 115.1 (C-5′), 130.8
(C-6′), 97.8 (C-1″), 82.1 (C-2″), 76.2 (C-3″), 69.4 (C-4″), 76.3 (C-5″), 60.5 (C-6″), 103.4 (C-1″′), 74.1 (C-2″′), 77.3 (C-3″′),
69.2 (C-4″′), 76.8 (C-5″′), 60.2 (C-6″′). Acid hydrolysis of 7 produced kaempferol and glucose [4].
Quercetin-3-O-(2 -O-β-D-glucopyranosyl)-β-D-galactopyranoside (8), yellow powder (MeOH), mp 225-226 C.
UV spectrum (λ , MeOH, nm): 256, 356; +AlCl : 274, 339sh, 428; +AlCl /HCl: 270, 363sh, 399.
3
3
max
PMR spectrum (400 MHz, DMSO-d , δ, ppm, J/Hz): 12.7 (1H, br.s, 5-OH), 9.3 (1H, br.s, 3′-OH), 7.69 (1H, dd,
6
J = 8.8, 2.4, H-6′), 7.61 (1H, d, J = 2.4, H-2′), 6.86 (1H, d, J = 8.8, H-5′), 6.42 (1H, d, J = 2.0, H-8), 6.21 (1H, d, J = 2.0, H-6),
5.64 (1H, d, J = 7.6, H-1″), 4.57 (1H, d, J = 7.6, H-1″′), 3.07-3.80 (sugar protons).
13
C NMR spectrum (400 MHz, DMSO-d , δ, ppm): 155.3 (C-2), 133.0 (C-3), 177.3 (C-4), 160.8 (C-5), 98.4 (C-6),
6
163.8 (C-7), 93.4 (C-8), 156.1 (C-9), 103.7 (C-10), 121.0 (C-1′), 115.2 (C-2′), 144.6 (C-3′), 148.2 (C-4′), 115.7 (C-5′), 122.1
(C-6′), 98.3 (C-1″), 80.6 (C-2″), 73.1 (C-3″), 67.3 (C-4″), 75.7 (C-5″), 59.7 (C-6″), 74.1 (C-2″′), 76.6 (C-3″′), 69.2 (C-4″′), 76.2
(C-5″′), 60.4 (C-6″′). Acid hydrolysis of 8 produced quercetin and galactose [5].
13
Based on the PMR and C NMR data, 9-11 were identified as 2-phenylethyl-O-β-D-glucopyranoside (9),
protocatechuic acid (10), and gallic acid (11).
Thus, juglanin (3), avicularin (4), hyperoside (6), kaempferol-3-O-(2″-O-β-D-glucopyranosyl)-β-D-glucopyranoside
(7), quercetin-3-O-(2″-O-β-D-glucopyranosyl)-β-D-galactopyranoside (8), and protocatechuic acid (10) were isolated for the
first time from R. rugosa Thunb.
REFERENCES
1.
2.
3.
4.
5.
S. M. Niu, S. H. Zhu, W. Li, D. Wang, C. H. Wang, and F. Liu, Acta Sci. Nat. Univ. Nankaiensis, 37, 29 (2004).
G. Ye and C. G. Huang, Chem. Nat. Comp., 42, 232 (2006).
M. Olszewska and M. Wolbis, Acta Pol. Pharm., 58, 367 (2001).
B. H. Hu, Z. Tian, and Z. C. Lou, Acta Bot. Sin., 30, 565 (1988).
Y. Zheng, X. W. Li, M. Y. Gui, and Y. R. Jin, Chin. Pharm. J., 41, 176 (2006).
737