NJC
Paper
We have shown that the substituents on the phenyl ring of the 15 S. Schmidt, S. Schulz, D. Bl ¨a ser, R. Boese and M. Bolte,
ligand backbone significantly affect the coordination chemistry
Organometallics, 2010, 29, 6097–6103.
of the complexes to afford dinuclear and trinuclear complexes. 16 C. M. Thomas, Chem. Soc. Rev., 2010, 39, 165–173.
Complexes 1–4 formed active and stable catalysts in the ring- 17 S. O. Ojwach, T. T. Okemwa, N. W. Attandoh and B. Omondi,
opening polymerization of e-caprolactone and D,L-lactide and
L-lactide to produce polymers with moderate weights and 18 J. Wang, Y. Yao, Y. Zhang and Q. Shen, Inorg. Chem., 2009,
molecular weight distributions. The catalytic activities of the
48, 744–751.
complexes were largely controlled by the ligand architecture 19 J. Wang, T. Cai, Y. Yao, Y. Zhang and Q. Shen, Dalton Trans.,
and metal atoms. The kinetics of the ROP reactions was pseudo-
2007, 5275–5281.
first order with respect to both e-caprolactone and lactide 20 Y. Luo, P. Xu, Y. Lei, Y. Zhang and Y. Wang, Inorg. Chim.
monomers. Both the temperature and solvent significantly
Acta, 2010, 363, 3597–3601.
influenced the ring-opening polymerization of e-caprolactone 21 K. Phomphrai, C. Pongchan-o, W. Thumrongpatanaraks,
Dalton Trans., 2013, 42, 10735–10745.
ꢁ1
and an overall activation energy of 28.5 kJ mol was obtained. The
catalysts display a reasonable degree of control of polymer stereo-
regularity producing predominantly heterotactic poly(D,L-lactide).
P. Sangtrirutnugul, P. Kongsaeree and M. Pohmakotr, Dalton
Trans., 2011, 40, 2157–2159.
22 Bruker, APEXII Bruker AXS Inc., 2009, Madison, Wisconsin, USA.
2
2
3 Bruker, SAINT Bruker AXS Inc., 2009, Madison, Wisconsin, USA.
4 Bruker, Bruker SADABS Bruker AXS Inc., 2009, Madison,
Wisconsin, USA.
Conflict of interest
2
2
2
5 G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
The authors declare no competing financial interest.
2008, 64, 112–122.
6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard
and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
7 T. Elkin, N. V. Kulkarni, B. Tumanskii, M. Botoshansky,
L. J. W. Shimon and M. S. Eisen, Organometallics, 2013, 32,
Acknowledgements
The authors would like to thank the College of Agriculture, Science
and Engineering, University of KwaZulu-Natal, and National
Research Foundation (NRF), South Africa for financial support.
6
337–6352.
8 E. C. Taylor and W. A. Ehrhart, J. Org. Chem., 1963, 28,
108–1112.
2
2
1
9 J. Zhang, K. Higashi, K. Ueda, K. Kadota, Y. Tozuka,
W. Limwikrant, K. Yamamoto and K. Moribe, Int. J. Pharm.,
2014, 465, 255–261.
References
1
S. Kasirajan and M. Ngouajio, Agron. Sustainable Dev., 2012,
2, 501–529.
W. Amass, A. Amass and B. Tighe, Polym. Int., 1998, 47, 89–144.
3
30 U. Kumar, J. Thomas and N. Thirupathi, Inorg. Chem., 2009,
49, 62–72.
K. E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. 31 M. Devereux, D. O’Shea, M. O’Connor, H. Grehan, G. Connor,
2
3
Shakesheff, Chem. Rev., 1999, 99, 3181–3198.
Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 2000, 21,
M. McCann, G. Rosair, F. Lyng, A. Kellett, M. Walsh, D. Egan
and B. Thati, Polyhedron, 2007, 26, 4073–4084.
32 G. Parkin, Chem. Rev., 2004, 104, 699–768.
4
5
6
117–132.
A.-C. Albertsson and I. K. Varma, Biomacromolecules, 2003, 33 J.-C. Wu, B.-H. Huang, M.-L. Hsueh, S.-L. Lai and C.-C. Lin,
, 1466–1486.
Polymer, 2005, 46, 9784–9792.
N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G. 34 N. W. Attandoh, S. O. Ojwach and O. Q. Munro, Eur. J. Inorg.
Lohmeijer and J. L. Hedrick, Chem. Rev., 2007, 107, 5813–5840.
Chem., 2014, 3053–3064.
A. P. Gupta and V. Kumar, Eur. Polym. J., 2007, 43, 4053–4074. 35 J. B o¨ rner, U. Fl o¨ rke, A. D o¨ ring, D. Kuckling, M. Jones and
4
7
8
C. A. Wheaton, P. G. Hayes and B. J. Ireland, Dalton Trans.,
009, 4832–4846.
H.-Y. Chen, B.-H. Huang and C.-C. Lin, Macromolecules,
005, 38, 5400–5405.
S. Herres-Pawlis, Sustainability, 2009, 1, 1226–1239.
36 L. Wang, W. Qin and W. Liu, Inorg. Chem. Commun., 2010,
13, 1122–1125.
2
9
2
37 Y.-P. Huo, S.-Z. Zhu and S. Hu, Tetrahedron, 2010, 66, 8635–8640.
1
0 M. Cheng, A. B. Attygalle, E. B. Lobkovsky and G. W. Coates, 38 G. Zhang, S. Wang, Q. Gan, Y. Zhang, G. Yang, J. Shi Ma and
J. Am. Chem. Soc., 1999, 121, 11583–11584.
H. Xu, Eur. J. Inorg. Chem., 2005, 4186–4192.
1 F. Drouin, P. O. Oguadinma, T. J. J. Whitehorne, R. E. 39 R.-H. Hui, P. Zhou and Z.-L. You, Indian J. Chem., Sect. A: Inorg.,
1
Prud’homme and F. Schaper, Organometallics, 2010, 29,
139–2147.
2 S. Collins, Coord. Chem. Rev., 2011, 255, 118–138.
Bio-inorg., Phys., Theor. Anal. Chem., 2009, 48A, 663–667.
40 G. Yuan, Y. Huo, X. Nie, H. Jiang, B. Liu, X. Fang and F. Zhao,
Dalton Trans., 2013, 42, 2921–2929.
2
1
1
3 L. F. Sanchez-Barba, C. Alonso-Moreno, A. Garces, M. Fajardo, 41 P. D. Knight, A. J. P. White and C. K. Williams, Inorg. Chem.,
J. Fernandez-Baeza, A. Otero, A. Lara-Sanchez, A. M. Rodriguez
and I. Lopez-Solera, Dalton Trans., 2009, 8054–8062.
4 F. T. Edelmann, in Adv. Organomet. Chem., ed. F. H. Anthony
2008, 47, 11711–11719.
42 P. Maiti, A. Khan, T. Chattopadhyay, S. Das, K. Manna,
D. Bose, S. Dey, E. Zangrando and D. Das, J. Coord. Chem.,
2011, 64, 3817–3831.
1
and J. F. Mark, Academic Press, 2008, vol. 57, pp. 183–352.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016
New J. Chem.