Full Paper
1.2 mmol, 2 equiv.) was added. The reaction was then warmed to
room temperature for 30 min. The solution was diluted with 15 mL
of Et2O and washed with saturated NaHCO3 aqueous solution (3 ×
15 mL). The organic layer was collected, dried with MgSO4, filtered
and the solvent evaporated to give 20c as a colorless oil in quantita-
tive yield (0.6 mmol, 137 mg), which was used directly in the next
step. 1H NMR (300 MHz, CDCl3, 25 °C, TMS): δ = 1.33 (s, 9 H, tBu)
1.55 (d, J = 6.4 Hz, 3 H; CH3CH) 5.17 (q, J = 6.8 Hz, 1 H; CHOH) 7.44
(d, J = 2.9 Hz, 1 H; ArH) 7.69 (d, J = 2.3 Hz, 1 H; ArH) 9.90 (s, 1 H,
CHO) ppm. 13C NMR (75 MHz, CDCl3): δ = 23.1, 31.4, 34.4, 66.3,
120.0, 128.8, 131.4, 133.3, 142.9, 156.7, 197.2 ppm.
Keywords: Hydrosilylation · Aldehydes · Alcohols · Lewis
bases · Homogeneous catalysis
[1] a) P. G. Andersson, I. J. Munslow, Modern Reduction Methods, Wiley-VCH,
Weinheim, 2008; b) P. Knochel, G. A. Molander, Comprehensive Organic
Synthesis II (Second Edition). Vol. 8, Elsevier, Amsterdam, 2014.
[2] a) G. L. Larson, J. L. Fry, Ionic and Organometallic-Catalyzed Organosilane
Reductions, vol. 71, John Wiley & Sons, Inc, New Jersey, 2010; b) S. Díez-
Gonzálaz, S. P. Nolan, Acc. Chem. Res. 2008, 41, 349–358; c) D. Addis, S.
Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6004–6011;
Angew. Chem. 2011, 123, 6128.
20c: Was dissolved in 24 mL of dry DCM in a round-bottomed flask
under Argon. NaHCO3 (126 mg, 1.5 mmol, 2.5 equiv.) was added
and the solution cooled to 0 °C. Dess–Martin periodinane (306 mg,
0.72 mmol, 1.2 equiv.) was added and the reaction warmed to room
temperature for 30 min. The reaction was then quenched with 2 %
Na2S2O3 aqueous solution (25 mL) and the layers were separated.
The organic phase was collected and the aqueous phase extracted
with DCM (2 × 25 mL). The organic phases were combined and
the solvent dried with MgSO4, filtered and the solvents evaporated.
Purification by flash chromatography (DCM) gave 3-acetyl-5-(tert-
butyl)salicylaldehyde 20 in 50 % yield (66 mg, 0.30 mmol) as a pale
yellow solid. 1H NMR (300 MHz, CDCl3, 25 °C, TMS): δ = 1.34 (s, 9 H,
tBu) 2.69 (s, 3 H, CH3CO) 7.90–8.13 (m, 2 H, ArH) 10.44 (s, 1 H, CHO)
12.66 (s, 1 H, ArOH) ppm. 13C NMR (75 MHz, CDCl3): δ = 27.8, 31.3,
34.4, 121.4, 124.1, 132.8, 133.9, 142.0, 162.4, 190.2, 203.9 ppm. MS
[3] a) G. Kumar, A. Muthukumar, G. Sekar, Eur. J. Org. Chem. 2017, 4883–
4890; b) B. Morandi, Y. Lee, Synlett 2017, 28, 2425–2428; c) S. R. Roy, S. C.
Sau, S. K. Mandal, J. Org. Chem. 2014, 79, 9150–9160; d) Y. Q. Zhang, N.
Funken, P. Winterscheid, A. Gansäuer, Angew. Chem. Int. Ed. 2015, 54,
6931–6934; Angew. Chem. 2015, 127, 7035.
[4] B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances
(Ed. B. Marciniec), Springer Netherlands, Dordrecht, 2009, pp. 289–339.
[5] a) J. L. Fry, M. Orfanopoulos, M. G. Adlington, W. P. Dittman, S. B. Silver-
man, J. Org. Chem. 1978, 43, 374–375; b) M. P. Doyle, C. T. West, S. J.
Donnelly, C. C. McOsker, J. Organomet. Chem. 1976, 117, 129–140.
[6] a) J. Boyer, R. J. P. Corriu, R. Perz, C. Réyé, J. Chem. Soc., Chem. Commun.
1981, 121–122; b) G. W. O'Neil, M. M. Miller, K. P. Carter, Org. Lett. 2010,
12, 5350–5353; c) C. Medina, K. P. Carter, M. Miller, T. B. Clark, G. W. O'Neil,
J. Org. Chem. 2013, 78, 9093–9101.
[7] a) H. Kaur, F. K. Zinn, E. D. Stevens, S. P. Nolan, Organometallics 2004, 23,
1157–1160; b) D. Lantos, M. Contel, S. Sanz, A. Bodor, I. T. Horváth, J.
Organomet. Chem. 2007, 692, 1799–1805; c) B. L. Tran, M. Pink, D. J.
Mindiola, Organometallics 2009, 28, 2234–2243; d) M. C. Lipke, A. L. Lib-
erman-Martin, T. D. Tilley, Angew. Chem. Int. Ed. 2017, 56, 2260–2294;
Angew. Chem. 2017, 129, 2298.
[8] a) S. Abbina, S. Bian, C. Oian, G. Du, ACS Catal. 2013, 3, 678–684; b) J. L.
Smeltz, P. D. Boyle, E. A. Ison, Organometallics 2012, 31, 5994–5997.
[9] a) D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. J. L. Leazer,
R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks,
T. Y. Zhang, Green Chem. 2007, 9, 411–420; b) J. Magano, J. R. Dunetz,
Org. Process Res. Dev. 2012, 16, 1156–1184.
[10] a) M. Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev. 2015, 44, 2202–
2220; b) W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345–354.
[11] M. P. Doyle, D. J. DeBruyn, S. J. Donnelly, D. A. Kooistra, A. A. Odubela,
C. T. West, S. M. Zonnebelt, J. Org. Chem. 1974, 39, 2740–2747.
[12] M. Tan, Y. Zhang, J. Y. Ying, Adv. Synth. Catal. 2009, 351, 1390–1394.
[13] S. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560–1638;
Angew. Chem. 2008, 120, 1584.
[14] M. Kira, K. Sato, H. Sakurai, J. Org. Chem. 1987, 52, 948–949.
[15] M. Zhao, W. Xie, C. Cui, Chem. Eur. J. 2014, 20, 9259–9262.
[16] a) M. Fujita, T. Hiyama, J. Org. Chem. 1988, 53, 5405–5415; b) L. Gan,
M. A. Brook, Can. J. Chem. 2006, 84, 1416–1425; c) N. C. Mamillapalli, G.
Sekar, RSC Adv. 2014, 4, 61077–61085.
(ESI+) m/z calculated for C13H17O3 [M + H]+ 221.1172, found
+
221.1161.
21: 49 % yield (20 mg), following general procedure, starting from
1
0.182 mmol (40 mg) of 20. H NMR (300 MHz, CDCl3, 25 °C, TMS):
δ = 1.32 (s, 12 H, tBu) 2.51–2.56 (br.s., 1 H, CH2OH) 2.66 (s, 3 H, CH3)
4.74 (s, 2 H, ArCH2) 7.56 (d, J = 2.3 Hz, 1 H; ArH) 7.64 (d, J = 2.3 Hz,
1 H; ArH) 12.57 (s, 1 H, ArOH) ppm. 13C NMR (75 MHz, CDCl3): δ =
26.8, 34.2, 61.8, 110.0, 118.8, 125.8, 129.2, 133.2, 141.4, 158.4, 204.97
ppm. MS (ESI) m/z calculated for C13H19O3 [M + H]+ 223.1329,
+
found 223.1329.
Reductive Amination of Salicylaldehyde and Indoline-Derived
Iminium: A mixture of salicylaldehyde (0.54 mmol), indoline
(64.4 mg, 0.54 mmol) and molecular sieves (3 Å, 255 mg) in di-
chloromethane (1 mL) was refluxed for 5 h under argon. The mix-
ture was then cooled to room temp. and DMPU (0.11 mmol, 14 mg)
added in one portion followed by dropwise addition of a solution
of PCS (0.65 mmol) in dichloromethane (1 mL) via a syringe pump
over 5 min. The resulting mixture was stirred for 1 h, treated with
a solution of TBAF in 1
M THF (0.75 mL, 0.75 mmol) and stirred for
[17] S. E. Varjosaari, V. Skrypai, P. Suating, J. J. M. Hurley, T. M. Gilbert, M. J.
Adler, Eur. J. Org. Chem. 2017, 229–232.
additional 10 min. The mixture was quenched with saturated NH4Cl
(15 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined
organic layers were dried with MgSO4, filtered out and solvent re-
moved under reduced pressure. The crude product obtained was
purified by flash column chromatography to afford 22 in 72 % yield
(87 mg, 0.39 mmol), with similar spectral characterization as de-
scribed previously.[32l]
[18] S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. 1996, 25, 407–408.
[19] a) S. Anwar, A. P. Davis, J. Chem. Soc., Chem. Commun. 1986, 831–832; b)
S. Anwar, A. P. Davis, Tetrahedron 1988, 44, 3761–3770; c) S. Anwar, G.
Bradley, A. P. Davis, J. Chem. Soc. Perkin Trans. 1 1991, 1383–1389.
[20] A. P. Davis, S. C. Hegarty, J. Am. Chem. Soc. 1992, 114, 2745–2746.
[21] R. J. P. Corriu, G. F. Lanneau, Z. Yu, Tetrahedron 1993, 49, 9019–9030.
[22] a) S. E. Denmark, B. D. Griedel, D. M. Coe, M. E. Schnute, J. Am. Chem.
Soc. 1994, 116, 7026–7043; b) A. G. Myers, S. E. Kephart, H. Chen, J. Am.
Chem. Soc. 1992, 114, 7922–7923; c) J. W. A. Kinnaird, P. Y. Ng, K. Kubota,
X. Wang, J. L. Leighton, J. Am. Chem. Soc. 2002, 124, 7920–7921.
[23] a) S. Rendler, M. Oestreich, Synthesis 2005, 1727–1747; b) C. Chuit, R. J. P.
Corriu, C. Reye, J. C. Young, Chem. Rev. 1993, 93, 1371–1448.
[24] a) T. Rosholm, P. M. Gois, R. Franzen, N. R. Candeias, ChemistryOpen 2015,
4, 39–46; b) P. Doan, A. Karjalainen, J. G. Chandraseelan, O. Sandberg, O.
Yli-Harja, T. Rosholm, R. Franzen, N. R. Candeias, M. Kandhavelu, Eur. J.
Med. Chem. 2016, 120, 296–303; c) I. Neto, J. Andrade, A. S. Fernandes,
C. P. Reis, J. K. Salunke, A. Priimagi, N. R. Candeias, P. Rijo, ChemMedChem
2016, 11, 2015–2023.
Acknowledgments
The Academy of Finland is acknowledged for the financial
support to N. R. C. (Decisions No. 287954 and 294067). L. F. V.
and J. R. V. acknowledge Fundação para
a Ciência e
Tecnologia (UID/QUI/00100/2013, SFRH/BD/120119/2016). CSC-
IT Center for Science Ltd, Finland, is acknowledged for the allo-
cation of computational resources.
Eur. J. Org. Chem. 0000, 0–0
7
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim