H. Hagiwara et al. / Tetrahedron Letters 42 (2001) 4349–4351
4351
the Heck products in acceptable yields. In the reactions
with vinylketones (Table 4, entries 6–8), yields were low
probably due to instability of both olefins and prod-
ucts. Reaction of bromostyrene and ethyl acrylate also
provided the desired product 7 (Fig. 1).
Ali, B.; Vasapollo, G.; Alper, H. J. Org. Chem. 1993, 58,
4739–4741; (g) Zargarian, D.; Alper, H. Organometallics
1993, 12, 712–714; (h) Reiser, O.; Konig, B.; Meerbolz,
K.; Heinze, J.; Wallauer, T.; Gerson, F.; Frim, B.;
Rabinovitz, M.; de Meijere, A. J. Am. Chem. Soc. 1993,
115, 3511–3518; (i) Brase, S.; Waegell, B.; de Meijere, A.
Synthesis 1998, 148–152.
In all cases, reactions were clean and the only side
products were arylhalides. Conversion yields could not
be obtained because of the high volatility of the aryl-
halides recovered.
7. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083; (b)
Wassersheid, P.; Keim, W. Angew. Chem., Int. Ed. Engl.
2000, 39, 3773–3789.
8. Recent examples of metal-catalyzed reactions in ionic
liquid picked up arbitrarily: (a) Chauvin, Y.; Mussmann,
L.; Olivier, H. Angew. Chem., Int. Ed. Engl. 1995, 34,
2698–2700; (b) Dullius, J. E. L.; Suarez, P. A.; Einloft, S.;
Souza, R. F.; Dupont, J. Organometallics 1998, 17, 815–
819; (c) Dyson, P. J.; Ellis, D. J.; Parker, D. G.; Welton,
T. J. Chem. Soc., Chem. Commun. 1999, 25–26; (d) Chen,
W.; Xu, L.; Chatterton, C.; Xiao, J. J. Chem. Soc., Chem.
Commun. 1999, 1247–1248; (e) Ellis, B.; Keum, W.;
Wasserscheid, P. J. Chem. Soc., Chem. Commun. 1999,
337–338; (f) Keim, W.; Vogt, D.; Waffenschmidt, H.;
Wasserscheid, P. J. Catal. 1999, 186, 481–484; (g)
Mathews, C. J.; Smith, P. J.; Welton, T. J. Chem. Soc.,
Chem. Commun. 2000, 1249–1250; (h) Howarth, J. Tetra-
hedron Lett. 2000, 41, 6627–6629.
9. Recent examples of reactions in ionic liquid picked up
arbitrarily: (a) Adams, C. J.; Earle, M. J.; Roberts, G.;
Seddon, K. R. J. Chem. Soc., Chem. Commun. 1998,
2097–2098; (b) Earle, M. J.; McCormac, P. B.; Seddon,
K. R. J. Chem. Soc., Chem. Commun. 1998, 2245–2256;
(c) Adams, C. J.; Earle, M. J.; Seddon, K. R. J. Chem.
Soc., Chem. Commun. 1999, 1043–1044; (d) Fischer, T.;
Sethi, A.; Welton, T.; Woolf, J. Tetrahedron 1999, 40,
793–796.
10. (a) Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett
1996, 1091–1092; (b) Herrmann, W. A.; Bohm, V. P. W.
J. Organomet. Chem. 1999, 572, 141–145; (c) Carmichael,
A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
Seddon, K. R. Organic Lett. 1999, 1, 997–1000; (d)
Bohm, V. P. W.; Herrmann, W. A. Chem. Eur. J. 2000, 6,
1017–1025; (e) Xu, L.; Chen, W.; Xiao, J. Organometal-
lics 2000, 19, 1123–1127.
11. Hagiwara, H.; Eda, Y.; Morohashi, K.; Suzuki, T.;
Ando, M.; Ito, N. Tetrahedron Lett. 1998, 39, 4055–4058.
12. Huddleston, J. G.; Willauer, H. D.; Swatloslki, R. P.;
Visser, A. E.; Robers, R. D. J. Chem. Soc., Chem.
Commun. 1998, 1765–1766.
Dupont et al.8b and, subsequently, Xiao et al.8d
reported the isolation and identification of a Pd com-
plex formed from Pd(OAc)2 or PdCl2 with ionic liquid.
Dissolution of Pd black over 100°C was proposed by
Earle et al.10c We investigated the presence of the Pd
species in an ionic liquid before and after the present
Heck reaction by ICP emission spectroscopy. After
filtration of the suspending Pd/C, ICP analysis revealed
that the concentration of Pd in the ionic liquid was
negligible. This important observation implies that the
Pd/C catalyzes the Heck reaction on the surface of Pd
held on the carbon.3
Thus, we have offered an expedient protocol for Heck
arylation reactions by using Pd/C as an inexpensive and
stable catalyst in ionic liquid. One major advantage of
the present protocol is that the catalyst system was
easily re-usable without loss of catalytic activity,
thereby multiplying catalyst turn-over. Another advan-
tage is that the reaction proceeded without phosphine
ligands, which are expensive, toxic and contaminants of
products. Green character of the ionic liquid as well as
easy operation make the present Heck reaction
attractive.
References
1. Tsuji, J. Palladium Reagents and Catalysts; John Wiley:
New York, 1996.
2. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000,
100, 3009–3066.
3. Reetz, M. T.; Lohmer, G. J. Chem. Soc., Chem. Commun.
1996, 1921–1922.
4. Mehnert, C. P.; Weaver, D. W.; Ying, J. Y. J. Am. Chem.
Soc. 1998, 120, 12289–12296.
5. (a) Heck, R. F.; Nolley, Jr., J. P. J. Org. Chem. 1972, 37,
2320–2322; (b) Bergbreiter, D. E.; Chen, B.; Weatherford,
D. J. Mol. Catal. 1992, 74, 409–419.
13. Typical experimental procedure: To a stirred slurry of
10% Pd/C (33 mg, 0.031 mmol) in [bmim]PF6 (1 ml) was
added iodobenzene (204 mg, 1 mmol), triethylamine (210
ml, 1.5 mmol) and ethyl acrylate (163 ml, 1.5 mmol). The
resulting slurry was heated at 100°C under a nitrogen
atmosphere for 12 h under a rubber septum. After cool-
ing to rt, the product was extracted six times with n-hex-
ane by vigorous stirring followed by decantation of the
upper n-hexane layer. Evaporation of the combined
organic layer and subsequent medium-pressure LC purifi-
cation of the residue (eluent: AcOEt:n-hexane=1:3)
afforded E-ethyl cinnamate (151 mg, 86%).
6. (a) Binger, P.; Bentz, P. Angew. Chem., Int. Ed. Engl.
1982, 21, 622–623; (b) Ferroud, D.; Gaudin, J. M.;
Genet, J. P. Tetrahedron Lett. 1986, 27, 845–846; (c)
Gavinato, G.; Toniolo, L. J. Mol. Catal. 1990, 58, 251–
267; (d) Ashton, P. R.; Brown, G. R.; Isaacs, N. S.;
Giuffrida, D.; Kohnke, F. H.; Mathias, J. P.; Slawin, A.
M. Z.; Smith, D. R.; Stoddart, J. F.; Williams, D. J. J.
Am. Chem. Soc. 1992, 114, 6330–6353; (e) Chiusoli, G. P.;
Costa, M.; Reverbeti, S. Synthesis 1989, 262–265; (f) El
.