C. Klumpp et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1721–1724
3. Burkholder, W. Phytopathology 1950, 40, 115–118.
1723
OCH3
N
4. (a) Govan, J. R.; Hughes, J. E.; Vandamme, P. J. Med.
Microbiol. 1996, 45, 395–407; (b) Meghdas, I.; Loiez, C.;
Baida, N.; Dabboussi, F.; Hamze, M.; Husson, M.-O.;
O
´
Izard, D. Arch. Pediatrie 2004, 11, 360–366.
O
5. Barker, W. R.; Callaghan, C.; Hill, L.; Noble, D. J.
Antibiot. 1979, 32, 1096–1102; (a) Itoh, J.; Miyadoh, S.;
Takahasi, S.; Amano, S.; Ezaki, N.; Yamada, Y. J.
Antibiot. 1979, 32, 1089–1095; (b) Itoh, J.; Amano, S.;
Ogawa, Y.; Kodama, Y.; Ezaki, N.; Yamada, Y. J.
Antibiot. 1980, 33, 377–382; (c) Meyer, J.-M.; Hohnadel,
O
Fe3+
O
O
N
N
S
S
´
D.; Halle, F. J. Gen. Microbiol. 1989, 135, 1479–1487.
9
6. (a) Cox, C. D.; Graham, R. J. Bacteriol. 1979, 137, 357–
364; (b) Liu, P. V.; Shokrani, F. Infect. Immunol. 1978, 22,
878–890; (c) Cox, C. D.; Rinehart, K. L.; Moore, M. L.;
Cook, J. C. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4256–
4260.
Figure 2. The 1:1:1 complex of iron (III), cepabactin and pyochelin.
7. (a) Stephan, H.; Freund, S.; Beck, W.; Jung, G.; Meyer,
J.-M.; Winkelmann, G. Biometals 1993, 6, 93–100; (b)
Sokol, P. A.; Darling, P.; Lewenza, S.; Corbett, C. R.;
Kooi, C. D. Infect. Immunol. 2000, 68, 6554–6560.
8. Darling, P.; Chan, M.; Cox, A. D.; Sokol, P. A. Infect.
Immunol. 1998, 66, 874–877.
9. For selected recent publications of our group: (a) Hen-
nard, C.; Truong, Q. C.; Desnottes, J. F.; Paris, J. M.;
Moreau, N. J.; Abdallah, M. A. J. Med. Chem. 2001, 44,
2139–2151; (b) Schalk, I. J.; Abdallah, M. A.; Pattus, F.
Biochemistry 2002, 41, 1663–1671; (c) Schalk, I. J.;
Abdallah, M. A.; Pattus, F. Biochem. Soc. Trans. 2002,
30, 702–705; (d) Folschweiller, N.; Gallay, J.; Vincent, M.;
Abdallah, M. A.; Pattus, F.; Schalk, I. J. Biochemistry
2002, 41, 14591–14601.
plexes in solution and show that the most stable com-
plexes involve the presence of cepabactin either as a
3:1 iron complex 8 or as a mixed complex 9. Neverthe-
less this latter seems somehow less stable than the for-
mer since it tends to equilibrate to it. Finally in such a
mixed complex 9, pyochelin apparently contributes to
the complexation giving four of the six dentates neces-
sary to achieve an octahedral ferric complex. Some very
recent results based on the tridimensional structure of
the specific outer membrane receptor FptA loaded with
ferripyochelin seem to confirm this observation.20 Taken
together these results support the structure shown above
for the complex 9 (Fig. 2).
10. (a) Zamri, A.; Abdallah, M. A. Tetrahedron 2000, 56, 249–
256; (b) Zamri, A.; Abdallah, M. A. Tetrahedron 2000, 56,
9397; (c) For other examples of pyochelin synthesis,
mutasynthesis or biosynthesis, see: Ino, A.; Murabayashi,
A. Tetrahedron 2001, 57, 1897–1902; (d) Rinehart, K. L.;
Staley, A. L.; Wilson, S. R.; Ankenbauer, R. G.; Cox, C.
D. J. Org. Chem. 1995, 60, 2786–2791; (e) Ankenbauer, R.
G.; Toyokuni, T.; Staley, A.; Rinehart, K. L., Jr.; Cox, C.
D. J. Bacteriol. 1988, 170, 5344–5351.
11. (a) Zamri, A.; Schalk, I. J.; Pattus, F.; Abdallah, M. A.
Bioorg. Med. Chem. Lett. 2003, 13, 1147–1150; (b) Mislin,
G. L.; Burger, A.; Abdallah, M. A. Tetrahedron 2004, 60,
12139–12145.
In conclusion, we have described in this paper a novel
and straightforward microwave assisted synthesis of
cepabactin 1, a siderophore of B. cepacia and of its iron
(III) complex 8. A strong point is that this protocol will
give an easy access to cepabactin analogues with a diver-
sity point located on position 5 using alkylation reac-
tions on the key compound 5. These types of
analogues are, to the best of our knowledge, only poorly
documented in the literature and are currently under
investigation in our group. In addition we have isolated
and characterized a new type of mixed complex 9
formed by two siderophores of B. cepacia, pyochelin
and cepabactin, and iron (III). The occurrence and sta-
bility of such a complex raises the question of the species
that effectively transport iron into bacterial cells.
12. Ohta, A.; Takahashi, N.; Shirokoma, Y.; Yuasa, K.
Heterocycles 1990, 30, 875–884.
13. The starting material was the 3-methoxy-2-(1H)-pyridone.
The synthesis of the latter compound starting from the less
costly 1,2-dihydroxypyridine is described: Hanessian, S.;
Saavedra, O. M.; Mascitti, V.; Marterer, W.; Oehrlein, R.;
Mak, C.-P. Tetrahedron 2001, 57, 3267–3280, but in our
hands this protocol led only to an unworkable mixture of
compounds.
Acknowledgements
We wish to thank the Centre National de la Recherche
Scientifique (CNRS) and the association Vaincre la
Mucoviscidose for financial support. We also wish to
thank Dr. Martine Schmitt, Dr. Jean-Jacques Bourgui-
14. Hasseberg, H.-A.; Gerlach, H. Liebigs Ann. Chem. 1989,
255–261.
15. 6-Bromo-3-methoxy-2-methylpyridine 6: a solution of 5
(332 mg, 1.77 mmol), CH3I (132 lL, 301 mg, 2.13 mmol),
K2CO3 (489 mg, 3.54 mmol) in acetone (15 mL) was
refluxed 16 h. The mixture was cooled to room tempera-
ture, filtered through a Celite pad and adsorbed on silica
before being purified on a silica gel column (20 g SiO2,
hexane/Et2O: 2:1) leading to the expected methylether 6
(338 mg, 1.68 mmol, yield: 95%) isolated as a white solid.
Mp 63–65 ꢁC; Rf 0.55 (hexane/Et2O: 2:1); 1H NMR
(300 MHz, CDCl3): d 2.49 (s, 3H), 3.86 (s, 3H), 6.71 (d,
J = 9.1 Hz, 1H), 7.43 (d, J = 9.1 Hz, 1H); 13C NMR
(75 MHz, CDCl3): d 11.8, 56.4, 108.5, 124.6, 125.8, 142.3,
154.8. MS (ES+) m/z 202 (M+H+, 100), 203 (7), 204 (100),
´
gnon and Dr. Gilbert Schlewer (Faculte de Pharmacie,
Illkirch, France) for their kind help during microwave
experiments.
References and notes
1. For a review, see: Abdallah, M. A.; Pattus, F. J. Chin.
Chem. Soc. 2000, 47, 1–20.
2. For a recent review on iron uptake in P. aeruginosa, see:
Poole, K.; McKay, G. A. Front. Biosci. 2003, 661–686.