Ye et al. Sci China Chem February (2016) Vol.58 No.2
5
Gilchrist TL. Heterocyclic Chemistry. 3rd Ed, England: Addison-
Wesley Longman, 1998; d) Ashton WT, Hutchins SM, Greenlee WJ,
Doss GA, Chang RSL, Lotti VJ, Faust KA, Chen TB, Zingaro GJ,
Kivlighn SD, Siegl PKS. J Med Chem, 1993, 36: 3595–3605; e) Kost
AN, Grandberg II. Adv Heterocycl Chem, 1966, 6: 347–429
a) Ojwach SO, Darkwa J. Inorg Chim Acta, 2011, 363: 1947–1964;
b) Singer RA, Doré M, Sieser JE, Berliner, MA. Tetrhedron Lett,
2006, 47: 3727–3731; c) Kowalcyk R, Skarzewski J. Tetrahedron,
2005, 61: 623–628; d) Singer RA, Caron S, McDermott RE, Arpin P,
Do NM. Synthesis, 2003: 1727–1731
a) Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem
Rev, 2011, 111: 6984–7034; b) Yet L. Pyrazoles. In: Katritzky AR,
Ramsden CA, Scriven EFV, Taylor RJK, Eds. Comprehensive Het-
erocylic Chemistry III. Volume 4. Oxford: Pergamon Press, 2008.
1–141; c) Elguero J. Pyrazoles. In: Katritzky AR, Rees CW, Scriven
EFV, Eds. Comprehensive Heterocylic Chemistry II. Volume 3. Ox-
ford: Pergamon Press, 1996. 1–75; d) Elguero J. Pyrazoles and their
benzo derivatives. In: Katritzky AR, Rees CW, Eds. Comprehensive
Heterocyclic Chemistry. Volume 5. Oxford: Pergamon Press, 1984.
167–303
2
3
4
a) Lévai A. ARKIVOC, 2005: 344–352; b) Huang YR, Katzenellen-
bogen JA. Org Lett, 2000, 2: 2833–2836; c) Powers DG, Casebier
DS, Fokas D, Ryan WJ, Troth JR, Coffen DL. Tetrahedron, 1998, 54:
4085–4089; d) Raiford LC, Peterson WJ. J Org Chem, 1936, 1:
544–551
Scheme 2 Proposed mechanism.
5
6
7
8
Auwers K, Heimke P. Liebigs Ann, 1927, 458: 186–220
complex 1 and completes the photocatalytic cycle.
Bhatnagar I, George MV. Tetrahedron, 1968, 24: 1293–1298
Dodwadmath RP, Wheeler TS. Proc Ind Acad Sci, 1935, 2: 438–451
Sabitha G, Reddy GS, Reddy CS, Fatima N, Yadav JS. Synthesis,
2003, 8: 1267–1271
4 Conclusions
9
Smith LI, Howard KL. J Am Chem Soc, 1943, 65: 159–164
10 Gladstone WAF, Norman ROC. J Chem Soc Chem Commun, 1966:
1536–1540
11 Huisgen R, Seidel M, Wallbillich G, Knupfer H. Tetrahedron, 1962,
17: 3–29
12 Zolfigol M, Azarifar D, Maleki B. Tetrahedron Lett, 2004, 45:
2181–2183
13 Singh SP, Kumar D, Prakash O, Kapoor RP. Synth Commun, 1997,
27: 2683–2689
14 Chai L, Zhao Y, Sheng Q, Liu ZQ. Tetrahedron Lett, 2006, 47:
9283–9285
15 Su G, Wu WT, Wang JT, Wu LM. Chin Chem Lett, 2008, 19: 1013–
1016
16 Nakamichi N, Kawashita Y, Hayashi M. Org Lett, 2002, 4: 3955–
3957
17 a) Kawashita Y, Hayashi M. Molecules, 2009, 14: 3073–3093; b)
Nakamichi N, Kawashita Y, Hayashi M. Synthesis, 2004, 7: 1015–
1020
In conclusion, we have presented a new and environmen-
tally benign methodology to prepare 1,3,5-triaryl pyrazoles.
With visible light irradiation of the platinum(II) complex 1,
the efficient photocatalytic conversion from readily availa-
ble 1,3,5-triaryl pyrazolines (2a–2g) to the corresponding
pyrazoles (3a–3g) is achieved. Spectroscopic study and
product analysis demonstrate that the reaction is initiated by
photoinduced electron transfer followed by proton-coupling
process, as a result, leading to H2 production and 1,3,5-
triaryl pyrazoles formation. In contrast to previous dehy-
drogen aromatization systems, the reaction was carried out
in organic solvent and H2 is generated directly from the
substrates, and that makes this photocatalytic protocol par-
ticularly attractive, in particular, for the oxidation of pyra-
zolines that is unstable when traditional metal oxidants are
used.
18 Ananthnag GS, Adhikari A, Balakrishna MS. Catal Commun, 2014,
43: 240–243
19 Schrader L. Tetrahedron Lett, 1971, 12: 2977–2980
20 a) Evans NA, Leaver IH. Aust J Chem, 1974, 27: 1797–1803; b) Ev-
ans NA, Rivett DE, Wilshire JFK. Aust J Chem, 1975, 27: 2267–
2274; c) Evans NA. Aust J Chem, 1975, 28: 433–437
21 Traven VF, Ivanov IV. Russ Chem Bull Int Ed, 2008, 57: 1063–1069
22 a) Schultz DM, Yoon TP. Science, 2014, 343: 1239176; b) Prier CK,
Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363; b)
Tucker JW, Stephenson CRJ. J Org Chem, 2012, 77: 1617–1622
23 a) Meng QY, Lei T, Zhao LM, Wu CJ, Zhong JJ, Gao XW, Tung
CH, Wu LZ. Org Lett, 2014, 16: 5968–5971; b) Zhong JJ, Meng QY,
Wang GX, Liu Q, Chen B, Feng K, Tung, CH, Wu LZ. Chem Eur J,
2013, 19: 6443–6450; c) Feng K, Zhang RY, Wu LZ, Tu B, Peng
ML, Zhang LP, Zhao D, Tung CH. J Am Chem Soc, 2006, 128:
14685–14690; d) Chan CW, Cheng LK, Che CM. Coord Chem Rev,
1994, 132, 87–97; e) Roundhill DM, Gray HB, Che CM. Acc Chem
Res, 1989, 22: 55–61
Acknowledgments This work was supported by the Ministry of Science
and Technology of China (2013CB834505, 2013CB834804), the National
Natural Science Foundation of China (21390404, 91427303, 21402217),
and the Key Research Programme of the Chinese Academy of Sciences
(KGZD-EW-T05).
Conflict of interest The authors declare that they have no conflict of
interest.
Supporting information The supporting information is available online
The supporting materials are published as submitted, without typesetting or
editing. The responsibility for scientific accuracy and content remains
entirely with the authors.
24 Zhang D, Wu LZ, Zhou L, Han X, Yang QZ, Zhang LP, Tung CH. J
Am Chem Soc, 2004, 126: 3440–3441
25 Wang DH, Peng ML, Han Y, Chen B, Tung CH, Wu LZ. Inorg
Chem, 2009, 48: 9995–9997
26 Chen YZ, Wang DH, Chen B, Zhong JJ, Tung CH, Wu LZ. J Org
Chem, 2012, 77: 6773–6777
27 Narayana-Prabhu R, Schmehl RH. Inorg Chem, 2006, 45: 4319–4321
1
a) Lahm GP, Cordova D, Barry JD. Bioorg Med Chem, 2009, 17:
4127–4133; b) Lamberth C. Heterocycles, 2007, 71: 1467–1502; c)