Properties of SmIII Complexes
353
compound. The data for antioxidation presented as means ꢅ s.d.
of three determinations and followed by Student’s t-test. Differ-
ences were considered to be statistically significant if Po0.05.
The SC50 value was introduced to denote the molar concentra-
tion of the tested compound, which caused a 50% scavenging
Acknowledgement
This study was supported by the National Natural Science Foundation of
China (20975046) and Gansu CSRPS (1010B-04).
effect on OHꢂ or O2ꢁꢂ
.
References
[1] (a) L. H. Schmidt, Annu. Rev. Microbiol. 1969, 23, 427. doi:10.1146/
ANNUREV.MI.23.100169.002235
Preparation of Ligands and Complexes
(b) A. A. El-Asmy, A. Z. El-Sonbati, A. A. Ba-Issa, M. Mounir,
Transition Met. Chem. 1990, 15, 222. doi:10.1007/BF01038379
[2] (a) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K.
Howard, Chem. Rev. 2002, 102, 1977. doi:10.1021/CR010452þ
(b) M. Albrecht, O. Osetska, R. Fro¨hliich, Dalton Trans. 2005, 23,
3757. doi:10.1039/B507621H
Ligands 1a–c were prepared using a previously described lit-
erature method.[10] Complex 2a was prepared by refluxing and
stirring equimolar amounts of a 40-mL methanol solution of 1a
(0.058 g, 0.2 mmol) and Sm(NO3)3ꢀ6H2O on a water-bath. After
refluxing for 30 min, triethylamine (0.020 g, 0.2 mmol) was
added into the reaction mixtures dropwise to deprotonate the
phenolic hydroxyl substituent of the 8-hydroxyquinolinato unit.
Then, the mixtures were refluxed and stirred continuously for
8 h. After cooling to room temperature, the precipitate was
centrifuged, washed with methanol, and dried in vacuum
over 48 h to give an orange powder. Yield 87.0% (0.094 g).
m/z (ESI-MS) 1297.1 [MþH]þ, 648.2 [M/2þH]þ (DMF solu-
(c) R. B. Hunter, W. Walker, Nature 1956, 178, 47. doi:10.1038/
178047A0
(d) D. M. Kramsch, A. J. Aspen, L. J. Rozler, Science 1981, 213, 1511.
doi:10.1126/SCIENCE.6792706
[3] (a) E. M. Hodnett, P. D. Mooney, J. Med. Chem. 1970, 13, 786.
doi:10.1021/JM00298A065
(b) E. M. Hodnett, W. J. Dunn, J. Med. Chem. 1972, 15, 339.
doi:10.1021/JM00273A037
[4] (a) Y. B. Zeng, N. Yang, W. S. Liu, N. Tang, J. Inorg. Biochem. 2003,
tion). Lm (DMF) 37.3 cm2 Oꢁ1 molꢁ1
. Anal. Calc. for
97, 258. doi:10.1016/S0162-0134(03)00313-1
(b) A. M. Pyle, T. Morii, J. K. Barton, J. Am. Chem. Soc. 1990, 112,
9432. doi:10.1021/JA00181A077
C34H30N8O14Sm2 (1075.8): C 37.93, H 2.79, N 10.41, Sm 27.96.
Found. C 38.03, H 2.79, N 10.38, Sm 27.91%.
Complex 2b was prepared from equimolar amounts of Sm
(NO3)ꢀ6H2O and 2b as the method of 2a. Yield 90.2%. m/z (ESI-
MS) 1329.2 [MþH]þ, 665.4 [M/2þH]þ (DMF solution). Lm
(DMF) 38.8 cm2 Oꢁ1 molꢁ1. Anal. Calc. for C34H30N8O16Sm2
(1107.8): C 36.83, H 2.71, N 10.11, Sm 27.15. Found. C 36.80,
H 2.70, N 10.08, Sm 27.22%.
(c) J. K. Barton, J. M. Goldberg, C. V. Kumar, N. J. Turro, J. Am.
Chem. Soc. 1986, 108, 2081. doi:10.1021/JA00268A057
[5] (a) S. Mahadevan, M. Palaniandavar, Inorg. Chim. Acre 1997, 254,
291. doi:10.1016/S0020-1693(96)05175-4
(b) S. J. Lippard, Acc. Chem. Res. 1978, 11, 211. doi:10.1021/
AR50125A006
(c) S. M. Hecht, Acc. Chem. Res. 1986, 19, 383. doi:10.1021/
AR00132A002
[6] (a) N. Grover, N. Gupta, H. H. Thorp, J. Am. Chem. Soc. 1992, 114,
Complex 2c was prepared from equimolar amounts of Sm
(NO3)ꢀ6H2O and 1c as the method of 2a. Yield 88.3%. m/z (ESI-
MS) 1299.2 [MþH]þ, 649.2 [M/2þH]þ (DMF solution). Lm
(DMF) 30.1 cm2 Oꢁ1 molꢁ1. Anal. Calc. for C32H28N10O14Sm2
(1077.8): C 35.63, H 2.60, N 12.99, Sm 27.91. Found. C 35.60, H
2.61, N 13.03, Sm 27.85.
3390. doi:10.1021/JA00035A034
(b) L. J. Govenlock, C. E. Mathieu, C. L. Maupin, D. Parker,
J. P. Riehl, G. Siligardi, J. A. G. Williams, Chem. Commun. 1999,
17, 1699. doi:10.1039/A904257A
[7] (a) B. N. Ames, M. K. Shigenaga, T. M. Hagen, Proc. Natl. Acad. Sci.
USA 1993, 90, 7915. doi:10.1073/PNAS.90.17.7915
(b) A. A. Horton, S. Fairhurst, Crit. Rev. Toxicol. 1987, 18, 27.
doi:10.3109/10408448709089856
(c) H. L. Wang, Z. Y. Yang, B. D. Wang, Transition Met. Chem. 2006,
31, 470. doi:10.1007/S11243-006-0015-3
[8] S. F. Lo, V. Mulabagal, C. L. Chen, C. L. Kuo, H. S. Tsay, J. Agric.
Food Chem. 2004, 52, 6916. doi:10.1021/JF040017R
[9] (a) S. Y. Chiang, J. Welch, F. J. Rauscher, T. A. Beerman, Biochem-
istry 1994, 33, 7033. doi:10.1021/BI00189A003
Determination of Crystal Structures
The radiation used for a crystal was graphite-monochromated
˚
Mo Ka radiation (0.71073 A) and the data were collected on a
Bruker APEX area-detector diffractometer by the v–2y scan
technique at 298(2) K. The structures were solved by direct
methods. All non-hydrogen atoms were refined anisotropically
by full-matrix least-squares methods on F2. Primary non-
hydrogen atoms were found from direct methods and secondary
non-hydrogen atoms were found from difference maps. The
hydrogen atoms were added geometrically and their positions
and thermal vibration factors were constrained. All calculat-
ions were performed using the programs SHELXS-97 and
SHELXL-97.[36]
(b) J. M. Woynarowski, M. Mchugh, R. D. Sigmund, T. A. Beerman,
Mol. Pharmacol. 1989, 35, 177.
(c) A. Y. Chen, C. Yu, B. Gatto, L. F. Liu, Proc. Natl. Acad. Sci. USA
1993, 90, 8131. doi:10.1073/PNAS.90.17.8131
[10] Y. C. Liu, Z. Y. Yang, J. Inorg. Biochem. 2009, 103, 1014.
doi:10.1016/J.JINORGBIO.2009.04.013
[11] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81. doi:10.1016/S0010-8545
(00)80009-0
[12] (a) M. M. Moawad, W. G. Hanna, J. Coord. Chem. 2002, 55, 439.
doi:10.1080/00958970211906
(b) T. M. A. Ismail, J. Coord. Chem. 2005, 58, 141. doi:10.1080/
0095897042000274733
[13] J. M. Ou-Yang, J. Inorg. Chem 1997, 13, 315 (in Chinese).
[14] (a) D. Suh, J. B. Chaires, Bioorg. Med. Chem. 1995, 3, 723.
doi:10.1016/0968-0896(95)00053-J
Accessory Publication
Supporting information containing the crystal data, UV-vis
spectra values, characteristic IR band data, McGhee and von
Hippel plots and plots of antioxidation properties for the
investigated compounds are available from the Journal’s
website. CCDC 704943 (2a9), 704944 (2b9), and 704945 (2c9)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
(b) R. Palchaudhuri, P. J. Hergenrother, Curr. Opin. Biotechnol. 2007,
18, 497. doi:10.1016/J.COPBIO.2007.09.006
[15] (a) S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry
1992, 31, 9319. doi:10.1021/BI00154A001