Journal of the American Chemical Society
Page 6 of 8
This work was supported in part by the NSF (DMR-1410450 and
DMR-1507081). NMR facilities at Boston University are support-
ed by the NSF (CHE-0619339).
was stable in deionized (DI) water but it underwent rapid deg-
radation in a pH 8.4 NaHCO3 solution over a two-hour period
as monitored by a significant change in G’ from 5.8×104 to
1
2
3.8×103 Pa. Importantly, the corresponding PAA hydrogel
with the same degree of cross-linking showed no observable
degradation in DI water and in a pH 8.4 NaHCO3 solution
over a two-hour period. Increasing the degree of cross-linking
to 25% has negligible effect on degradation kinetics, which is
consistent with the fact that the degradation mainly occurs via
the backbone of PGAC. Interestingly, in a 7.4 PBS buffer, the
PGAC hydrogel, although slower, still underwent significant
degradation as monitored by the decrease in the G’ from 5.8
3
4
5
6
7
8
9
REFERENCES
(1)
Buchholz, F. L. Polyacrylamides and Poly(Acrylic
Acids); Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
Germany, 2012; Vol. 28.
(2)
Paik, Y. H.; Simon, E. S.; Swift, G. Hydrophilic
Polymers 1996, 248, 79.
(3)
Larson, R. J.; Bookland, E. A.; Williams, R. T.; Yocom,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
K. M.; Saucy, D. A.; Freeman, M. B.; Swift, G. J Environ Polym
Degr 1997, 5, 41.
×104 to 4×104 Pa in 2 hours and finally to about 4×103 Pa
after 8 hours. While the polycarbonate backbone and the
cross-linking sites within the hydrogel are stable under pH 7.4,
we attributed the degradation to the neutralization of the re-
maining carboxylic acid side chain to form sodium carbox-
ylate on treatment of pH 7.4 PBS buffer and subsequent attack
of the carboxylate anion on the carbonate backbone. This is
also supported by the degradation study of PGAC in pH 7.4
buffer prepared in D2O solvent (Figure S22). This result is in
sharp contrast to most degradable hydrogels reported which
possess degradation half times of several days or weeks.
(4)
Matsumura, S.; Maeda, S.; Takahashi, J.; Yoshikawa, S.
Kobunshi Ronbunshu 1988, 45, 317.
(5)
Hayashi, T.; Mukouyama, M.; Sakano, K.; Tani, Y.
Appl Environ Microb 1993, 59, 1555.
(6)
(7)
(8)
(9)
(10)
Kawai, F. Appl. Microbiol. Biotechnol. 1993, 39, 382.
Swift, G. Polym. Degrad. Stab. 1998, 59, 19.
Swift, G. Polym. Degrad. Stab. 1994, 45, 215.
Gross, R. A.; Kalra, B. Science 2002, 297, 803.
Gancet, C.; Pirri, R.; Dalens, J. M.; Boutevin, B.;
Guyot, B.; Loubat, C.; Le Petit, J.; Farnet, A. M.; Tagger, S.
Macromolecular Symposia 1999, 144, 211.
(11)
Chiellini, E.; Corti, A.; D'Antone, S.; Solaro, R. Prog.
§
CONCLUSION
Polym. Sci. 2003, 28, 963.
(12)
Haba, O.; Tomizuka, H.; Endo, T. Macromolecules
In summary, a facile route to a degradable version of
2005, 38, 3562.
poly(acrylic acid) – poly(glyceric acid carbonate) –, is de-
scribed via the copolymerization of benzyl glycidate and CO2
using the bifunctional [SalcyCoIIIX] catalyst followed by hy-
drogenolysis. The polymerizaiton reaction occurs with high
carbonate linkage selectivity (>99%) and polymer/cyclic car-
bonate selectivity (~90%). Deprotection of the resultant poly-
mer gives poly(glyceric acid carbonate) which degrades in
aqueous solution. With a degradable site introduced into every
repeating unit, the hydrogel prepared from PGAC readily de-
grades while the one prepared from poly(acrylic acid) does
not. The current pool of acidic polymers is limited in both size
and diversity, and includes only a handful of well-defined
structures such as poly(malic acid)s,63 poly(aspartic acid)s,
poly(glutamic acid)s, and poly(glyoxylic acid).64 Poly(glyceric
acid carbonate) expands the repertoire of and serves as an im-
portant complement. Along with its degradability and biocom-
patibility, we envision that poly(glyceric acid carbonate) will
be of utility for chemists and material scientist working on a
wide range of challenges in the chemical, biomedical, and
pharmaceutical areas.
(13)
Azechi, M.; Matsumoto, K.; Endo, T. J Polym Sci Pol
Chem 2013, 51, 1651.
(14)
Tezuka, K.; Komatsu, K.; Haba, O. Polym. J. 2013, 45,
1183.
(15)
Zhou, C. H. C.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q.
M. Chem. Soc. Rev. 2008, 37, 527.
(16)
Qin, Z. Q.; Thomas, C. M.; Lee, S.; Coates, G. W.
Angew. Chem. Int. Ed. 2003, 42, 5484.
(17)
Lu, X. B.; Wang, Y. Angew. Chem. Int. Ed. 2004, 43,
3574.
(18)
Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc.
2005, 127, 10869.
(19)
Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y.
J.; Peng, X. J.; Zhang, Z. C.; Li, B. J. Am. Chem. Soc. 2006, 128,
1664.
(20)
Vogdanis, L.; Martens, B.; Uchtmann, H.; Hensel, F.;
Heitz, W. Makromol Chem 1990, 191, 465.
(21)
(22)
Lee, J. C.; Litt, M. H. Macromolecules 2000, 33, 1618.
Calderon, M.; Quadir, M. A.; Sharma, S. K.; Haag, R.
Adv. Mater. 2010, 22, 190.
(23)
Zhang, H.; Grinstaff, M. W. Macromol. Rapid
Commun. 2014, 35, 1906.
ASSOCIATED CONTENT
Experimental procedures and characterization data. This material
(24)
Carnahan, M. A.; Grinstaff, M. W. J. Am. Chem. Soc.
2001, 123, 2905.
(25)
Ray, W. C.; Grinstaff, M. W. Macromolecules 2003, 36,
3557.
(26)
5532.
(27)
3280.
(28)
AUTHOR INFORMATION
Zelikin, A. N.; Putnam, D. Macromolecules 2005, 38,
Geschwind, J.; Frey, H. Macromolecules 2013, 46,
Oudshoorn, M. H. M.; Rissmann, R.; Bouwstra, J. A.;
Corresponding Author
* E-mail: mgrin@bu.edu
Author Contributions
Hennink, W. E. Biomaterials 2006, 27, 5471.
(29) Sisson, A. L.; Steinhilber, D.; Rossow, T.; Welker, P.;
Licha, K.; Haag, R. Angew. Chem. Int. Ed. 2009, 48, 7540.
(30) Thomas, A.; Müller, S. S.; Frey, H. Biomacromolecules
2014, 15, 1935.
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the manu-
script.
ACKNOWLEDGMENT
(31)
Haag, R.; Sunder, A.; Stumbe, J. F. J. Am. Chem. Soc.
2000, 122, 2954.
ACS Paragon Plus Environment