LETTER
Samarium Diiodide Induced Cyclizations of Alkenyl-Substituted g-Keto Esters
2091
(4) (a) Inanaga, J.; Yokoyama, Y.; Hanada, Y.; Yamaguchi, M.
Tetrahedron Lett. 1991, 32, 6371. (b) Matsuda, F.; Sakai,
T.; Okada, N.; Miyashita, M. Tetrahedron Lett. 1998, 39,
863. (c) Tamiya, H.; Goto, K.; Matsuda, F. Org. Lett. 2004,
6, 545. (d) Molander, G. A.; McKie, J. A. J. Org. Chem.
1994, 59, 3186.
(5) (a) Molander, G. A.; Alonso-Alija, C. J. Org. Chem. 1998,
63, 4366. (b) Molander, G. A.; Machrouhi, F. J. Org. Chem.
1999, 64, 4119. (c) Molander, G. A.; Koellner, C. J. Org.
Chem. 2000, 65, 8333. (d) Molander, G. A.; Brown, G. A.;
Storch de Gracia, I. J. Org. Chem. 2002, 67, 3459.
(e) Molander, G. A.; Le Huerou, Y.; Brown, G. A. J. Org.
Chem. 2001, 66, 4511.
(6) (a) Khan, F. A.; Czerwonka, R.; Zimmer, R.; Reissig, H.-U.
Synlett 1997, 995. (b) Reissig, H.-U.; Khan, F. A.;
Czerwonka, R.; Dinesh, C. U.; Shaikh, A. L.; Zimmer, R.
Eur. J. Org. Chem. 2006, 4419. (c) Nandanan, E.; Dinesh,
C. U.; Reissig, H.-U. Tetrahedron 2000, 56, 4267.
(7) (a) Kunkel, E.; Reichelt, I.; Reissig, H.-U. Liebigs Ann.
Chem. 1984, 512. (b) For a general review, see: Reissig,
H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(8) (a) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
(b) Molander, G. A.; Rivero, M. R. Org. Lett. 2002, 4, 107.
(c) Molander, G. A.; Bernardi, C. R. J. Org. Chem. 2002, 67,
8424. (d) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
(9) Typical Procedure for SmI2-Induced Cyclizations –
Conversion of 5 into 14 and 15
stituted at the b-styryl position is suggested in Figure 1
which may rationalize our results depicted in Scheme 4.
The methoxycarbonyl group and the substituent R1 occu-
py pseudoequatorial positions, while the bulky samari-
um(III)oxy substituent is forced into a pseudoaxial
position. The olefin approaches in an antiperiplanar fash-
ion to the samarium(III)oxy group13 leading to a staggered
conformation. As a consequence trans products are ob-
tained selectively, in which the R2 group is situated at the
same face of the eight-membered ring as the methoxycar-
bonyl and the R1 substituent. More detailed studies are re-
quired to substantiate these ideas.
R2
R1
R1
MeO2C
MeO2C
H
OSmI2
H
H
R2
OSmI2
Figure 1 Suggested transition state for 8-endo-trig cyclizations of
g-keto esters substituted at the b-styryl position leading to trans pro-
ducts with high selectivity (HMPA ligands at samarium are omitted
for simplicity).
Samarium metal (278 mg, 1.85 mmol) and 1,2-diiodoethane
(477 mg, 1.69 mmol) were placed under a flow of argon in a
flame-dried, two-necked round-bottomed flask containing a
magnetic stirring bar and a septum inlet. THF (20 mL) was
added, and the mixture was vigorously stirred at r.t. for 2 h.
HMPA (2.40 mL, 13.8 mmol) was added to this solution of
SmI2, and after 10 min of stirring a solution of substrate 5
(200 mg, 0.77 mmol) and t-BuOH (146 mL, 1.54 mmol) in
THF (31 mL) was added over 2 h. The mixture was stirred at
r.t. for 16 h and quenched with sat. aq NaHCO3 solution (20
mL). The phases were separated and the aqueous layer was
extracted with Et2O (3 × 25 mL). The combined organic
layers were washed with H2O (10 mL) and brine (10 mL)
and dried (Na2SO4). The products were purified by column
chromatography (silica gel, hexane–EtOAc = 10:1) to
furnish 80 mg (40%) 14 as colorless oil and 67 mg (38%) 15
as colorless crystals (mp 130–132 °C).
In conclusion, we have extended our approach to cyclooc-
tanol derivatives to substrates bearing substituents at the
alkene moiety. We have successfully determined how the
newly introduced substituents influence regio- and stere-
oselectivity of an intramolecular 8-endo-trig ketyl–alkene
coupling reaction. Furthermore, the formation of interest-
ing tricyclic and tetracyclic products by 7-exo-trig cy-
clization was observed.
Acknowledgment
Generous support of this work by the Deutsche Forschungsgemein-
schaft, the Fonds der Chemischen Industrie, and the Bayer Schering
Pharma AG is most gratefully acknowledged.
Analytical Data for Methyl (6RS,8RS,10RS)-8-Hydroxy-
8,10-dimethyl-5,6,7,8,9,10-hexahydrobenzo[8]-
annulene-6-carboxylate (14)
References and Notes
Compound 14 shows temperature-dependent NMR spectra.
At r.t. some signals appear broad, measurement at 55 °C
allowed to see the signals more clearly. 1H NMR (500 MHz,
CDCl3, 55 °C): d = 1.20 (s, 3 H, 8-Me), 1.33 (dd, J = 11.5,
14.7 Hz, 1 H, 7-H), 1.33 (d, J = 7.1 Hz, 3 H, 10-Me), 1.62
(dd, J = 11.4, 14.3 Hz, 1 H, 9-H), 1.67 (dd, J = 3.8, 14.7 Hz,
1 H, 7-H), 1.79–1.83 (m, 1 H, 9-H), 3.10 (dddd, J = 2.9, 3.8,
7.5, 11.5 Hz, 1 H, 6-H), 3.16 (dd, J = 2.9, 13.9 Hz, 1 H, 5-
H), 3.36–3.43 (m, 1 H, 10-H), 3.43 (dd, J = 7.5, 13.9 Hz, 1
H, 5-H), 3.68 (s, 3 H, CO2Me), 6.97–6.99, 7.06–7.10, 7.17–
7.25 (3 m, 1 H, 1 H, 2 H, Ar) ppm. The signal for the OH
group could not be assigned unambiguously. 13C NMR (125
MHz, CDCl3, 55 °C): d = 23.2 (q, 10-Me), 30.2 (d, C-10),
32.3 (t, C-5), 36.0 (q, 8-Me), 36.5 (t, C-7), 42.2 (d, C-6), 55.1
(t, C-9), 71.5 (s, C-8), 125.1, 125.9, 127.1, 129.6, 136.5,
146.3 (4 d, 2 s, Ar), 51.7, 176.1 (q, s, CO2Me) ppm. IR
(neat): n = 3500 (br, OH), 3100-2840 (=CH, CH), 1715
(C=O) cm–1. ESI-TOF: m/z calcd for: 217.1255 [M + H]+,
239.1074 [M + Na]+, 255.0813 [M + K]+; found: 217.1267,
239.1095, 255.0844.
(1) Selected reviews: (a) Petasis, N. A.; Patane, M. A.
Tetrahedron 1992, 48, 5757. (b) Mehta, G.; Singh, V.
Chem. Rev. 1999, 99, 881.
(2) Namy, J. L.; Girard, P.; Kagan, H. B. New J. Chem. 1977, 1,
5.
(3) Reviews: (a) Gopalaiah, K.; Kagan, H. B. New J. Chem.
2008, 32, 607. (b) Ebran, J.-P.; Jensen, C. M.; Johannesen,
S. A.; Karaffa, J.; Lindsay, K. B.; Taaning, R.; Skrydstrup,
T. Org. Biomol. Chem. 2006, 4, 3553. (c) Concellon, J. M.;
Rodriguez-Solla, H. Eur. J. Org. Chem. 2006, 1613.
(d) Jung, D. Y.; Kim, Y. H. Synlett 2005, 3019.
(e) Edmonds, D. J.; Johnston, D.; Procter, D.-J. Chem. Rev.
2004, 104, 3371. (f) Berndt, M.; Gross, S.; Hölemann, A.;
Reissig, H.-U. Synlett 2004, 422. (g) Kagan, H. B.
Tetrahedron 2003, 59, 10351. (h) Steel, P. G. J. Chem. Soc.,
Perkin Trans. 1 2001, 2727. (i) Krief, A.; Laval, A.-M.
Chem. Rev. 1999, 99, 745. (j) Kagan, H. B.; Namy, J. L.
Top. Organomet. Chem. 1999, 2, 155. (k) Molander, G. A.;
Harris, C. R. Tetrahedron 1998, 54, 3321. (l) Molander,
G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
Synlett 2009, No. 13, 2089–2092 © Thieme Stuttgart · New York