LETTER
4,5-Disubstituted Triazolyl-Nucleosides
2127
(6) (a) Suwa, A.; Hirakata, M.; Kaneko, Y.; Sato, S.; Suzuki, Y.;
Huwana, M. Clin. Rheumatol. 2009, 28, 227. (b) Yokota, S.
Pediatr. Int. 2002, 44, 196.
(7) (a) Broggi, J.; Kumamoto, H.; Berteina-Raboin, S.; Nolan,
S. P.; Agrofoglio, L. A. Eur. J. Org. Chem. 2009, 1880.
(b) Pradere, U.; Roy, V.; McBrayer, T. R.; Schinazi, R. F.;
Agrofolio, L. A. Tetrahedron 2008, 64, 9044. (c) Joubert,
N.; Shinazi, R. F.; Agrofoglio, L. A. Tetrahedron 2005, 61,
11744.
(8) (a) Zhu, R.; Wang, M.; Xia, Y.; Qu, F.; Neyts, J.; Peng, L.
Bioorg. Med. Chem. Lett. 2008, 18, 3321. (b) Li, W.; Xia,
Y.; Fan, Z.; Qu, F.; Wu, Q.; Peng, L. Tetrahedron Lett. 2008,
49, 2804. (c) Xia, Y.; Li, W.; Qu, F.; Fan, Z.; Liu, X.; Berro,
C.; Rauzy, E.; Peng, L. Org. Biomol. Chem. 2007, 5, 1695.
(9) Ackermann, L.; Potukichi, H. K.; Landsberg, D.; Vicente, R.
Org. Lett. 2008, 10, 3081.
(10) Li, L.; Zhang, G.; Zhu, A.; Zhang, L. J. Org. Chem. 2008,
73, 3630.
(11) (a) El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.;
Benhida, R. Bioorg. Med. Chem. Lett. 2007, 17, 6656.
(b) Guezguez, R.; Bougrin, K.; El Akri, K.; Benhida, R.
Tetrahedron Lett. 2006, 47, 4807.
(12) (a) Peyron, C.; Benhida, R.; Bories, C.; Loiseau, P. Bioorg.
Chem. 2005, 33, 439. (b) Spadafora, M.; Burger, A.;
Benhida, R. Synlett 2008, 1225. (c) Spadafora, M.; Mehiri,
M.; Burger, A.; Benhida, R. Tetrahedron Lett. 2008, 49,
3967. (d) Peyron, C.; Benhida, R. Synlett 2009, 3, 472.
(13) (a) Tornoe, C. W.; Christensen, C.; Meldal, M. J. J. Org.
Chem. 2002, 67, 3057. (b) Rostovtsev, V. V.; Gree, L. G.;
Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002,
41, 2596.
(14) For mechanistic studies on the Cu-catalyzed alkyne-azide
1,3-dipolar cycloaddition, see: Himo, F.; Locell, T.; Hilgtaf,
R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.;
Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
13C NMR (50 MHz, CDCl3): d = 14.3, 20.5, 20.6, 20.8, 61.7,
62.7, 71.0, 74.3, 81.2, 88.9, 128.3, 128.7, 129.9, 132.6,
136.8, 160.3, 169.2, 169.5, 170.7, 172.0. HRMS (ESI):
m/z [M + H]+ calcd for C22H26N3O9Se: 556.0834; found:
526.0829.
2e: 1H NMR (200 MHz, CDCl3): d = 0.93 (t, J = 7.1 Hz, 3 H,
CH3), 1.96 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.03 (s, 3 H, Ac),
2.37 (s, 3 H, CH3Ph), 3.99 (dd, J = 12.3, 4.5 Hz, 1 H, H-5¢),
4.07 (q, J = 7.1 Hz, 2 H, CH2 ester), 4.17 (dd, J = 12.3, 3.3
Hz, 1 H, H-5¢), 4.31 (dd, J = 7.9, 4.5 Hz, 1 H, H-4¢), 5.59 (t,
J = 4.7 Hz, 1 H, H-3¢), 6.07 (m, 2 H, H-1¢ and H-2¢), 7.23 (d,
J = 8.1 Hz, 2 H, H-Ar), 7.59 (d, J = 8.1 Hz, 2 H, H-Ar). 13
NMR (50 MHz, CDCl3): d = 13.6, 20.3, 20.4, 20.6, 21.9,
C
61.6, 62.5, 70.8, 73.7, 81.7, 89.4, 129.7, 133.7, 137.6, 138.8,
146.5, 159.4, 169.1, 169.4, 170.4, 185.4. HRMS (ESI):
m/z [M + H]+ calcd for C24H28N3O10: 518.1775; found:
518.1781.
2h: 1H NMR (200 MHz, CDCl3): d = 3.86 (s, 3 H, OCH3),
4.61 (dd, J = 12.2, 4.9 Hz, 1 H, H-5¢), 4.78 (dd, J = 12.2, 3.7
Hz, 1 H, H-5¢), 4.94 (dd, J = 10.9, 5.3 Hz, 1 H, H-4¢), 6.35
(dd, J = 7.0, 5.1 Hz, 1 H, H-3¢), 6.40 (d, J = 2.0 Hz, 1 H, H-
1¢), 6.50 (dd, J = 5.1, 2.0 Hz, 1 H, H-2¢), 7.00 (d, J = 8.9 Hz,
2 H, H-Ar), 7.30–7.65 (m, 9 H, H-Ar), 7.85–8.10 (m, 8 H,
H-Ar). 13C NMR (50 MHz, CDCl3): d = 55.4, 63.7, 71.9,
75.1, 81.2, 88.2, 114.3, 121.5, 128.1, 128.5, 128.6, 128.7,
130.0, 133.3, 133.7, 134.0, 142.3, 160.1, 165.2, 166.3.
MS (ES): m/z = 75.8 [M + Na].
(19) To a solution of 2a (1 mmol) in toluene (10 mL) were
successively added 2-(tributylstannyl)furan (2 equiv),
Pd(PPh3)2Cl2 (5 mol%), CuI (5 mol%) and Et3N (1 equiv).
The reaction mixture was stirred for 30 min at 80 °C. After
the reaction was complete (1H NMR monitoring), the
mixture was filtered through Celite and the solvent was
removed. The crude product was purified by flash silica gel
chromatography (cyclohexane–EtOAc, 9:1→1:1) to afford
the desired compound in 95% isolated yield. 1H NMR (200
MHz, CDCl3): d = 1.37 (t, J = 7.1 Hz, 3 H, CH3), 2.00 (s,
3 H, Ac), 2.09 (s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.11 (dd,
J = 12.1, 4.4 Hz, 1 H, H-5¢), 4.30–4.50 (m, 4 H, H-4¢, H-5¢
and CH2 ester), 5.82 (t, J = 6.2 Hz, 1 H, H-3¢), 6.17 (dd,
J = 5.2, 2.9 Hz, 1 H, H-2¢), 6.39 (d, J = 2.9 Hz, 1 H, H-1¢),
6.60 (dd, J = 3.4, 1.8 Hz, 1 H, H-furan), 7.45 (d, J = 3.4 Hz,
1 H, H-furan), 7.66 (d, J = 1.8 Hz, 1 H, H-furan). 13C NMR
(50 MHz, CDCl3): d = 14.4, 20.6, 20.8, 61.6, 62.9, 71.2,
74.4, 81.4, 89.7, 112.4, 117.6, 139.0, 145.3, 151.5, 157.9,
160.8, 169.4, 169.5, 170.7. HRMS (ESI): m/z [M + H]+
calcd for C20H24N3O10: 466.1462; found: 466.1456. This
compound was then dissolved in MeOH (8 mL) and the
solution was saturated with ammonia at 0 °C and stirred for
1 h at r.t. The crude product was evaporated and purified by
flash silica gel chromatography (CH2Cl2–MeOH, 9:1) to
afford nucleoside 4 in 91% yield. Free nucleoside 4: 1H
NMR (200 MHz, CD3OD): d = 3.60 (dd, J = 12.1, 5.6 Hz,
1 H, H-5′), 3.75 (dd, J = 12.2, 3.7 Hz, 1 H, H-5′), 3.88 (s,
3 H, OMe), 4.13 (dd, J = 9.2, 5.5 Hz, 1 H, H-4′), 4.51 (t,
J = 5.4 Hz, 1 H, H-3′), 4.87 (t, J = 1.7 Hz, 1 H, H-2′), 6.17
(d, J = 2.9 Hz, 1 H, H-1′), 6.69 (dd, J = 3.4, 1.8 Hz, 1 H, H-
furan), 7.36 (d, J = 3.4 Hz, 1 H, H-furan), 7.82 (d, J = 1.8
Hz, 1 H, H-furan). 13C NMR (50 MHz, CD3OD): d = 52.6,
63.3, 72.2, 76.0, 87.3, 93.3, 113.0, 118.0, 139.8, 147.0,
159.0, 161.7, 162.2. HRMS (ESI): m/z [M + Na]+ calcd for
C13H15N3O7Na: 348.0808; found: 348.0807.
(15) 2a: 1H NMR (200 MHz, CDCl3): d = 1.36 (t, J = 7.1 Hz, 3 H,
CH3), 1.97 (s, 3 H, Ac), 2.07 (s, 6 H, Ac), 4.07 (dd, J = 12.3,
4.2 Hz, 1 H, H-5¢), 4.25–4.50 (m, 4 H, H-4¢, H-5¢ and CH2
ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3¢), 6.07 (dd, J = 5.5, 3.1
Hz, 1 H, H-2¢), 6.12 (d, J = 3.1 Hz, 1 H, H-1¢). 13C NMR (50
MHz, CDCl3): d = 14.2, 20.4, 20.5, 20.6, 61.6, 62.5, 70.9,
73.9, 81.5, 90.3, 142.2, 159.9, 169.2, 169.4, 170.4. HRMS
(ESI): m/z [M+H]+ calcd for C16H21N3O9I: 526.0322; found:
526.0317.
(16) (a) Benhida, R.; Blanchard, P.; Fourrey, J.-L. Tetrahedron
Lett. 1998, 39, 6849. (b) Wirth, T.; Hirt, U. H. Synthesis
1999, 1271. (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev.
2002, 102, 2523. (d) Wirth, T. Top. Curr. Chem. 2003, 224.
(17) With excess of I2 as electrophile the reaction was sluggish
when only one equivalent of DIPEA was used.
(18) Typical procedure: To a solution of azido-sugar (1 mmol)
in CH2Cl2 (10 mL) were successively added alkyne (1.1
equiv), electrophile (3 equiv), CuX (CuI, CuBr or CuCl, 1.1
equiv) and DIPEA (see Table 1 and Table 2). The reaction
mixture was stirred at r.t. until the reaction was complete as
indicated by TLC. The mixture was filtered through Celite
and the solvent was removed. The crude product was
purified by flash silica gel chromatography (cyclohexane–
EtOAc, 9:1→1:1) to afford the desired 1,4,5-trisubstituted
triazoles.
Analytical data for selected compounds:
2d: 1H NMR (200 MHz, CDCl3): d = 1.28 (t, J = 7.1 Hz, 3 H,
CH3), 1.97 (s, 3 H, Ac), 1.98 (s, 3 H, Ac), 2.04 (s, 3 H, Ac),
4.05 (dd, J = 13.1, 5.1 Hz, 1 H, H-5¢), 4.25–4.40 (m, 4 H, H-
4¢, H-5¢ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3¢), 5.88
(dd, J = 5.2, 3.0 Hz, 1 H, H-2¢), 6.27 (d, J = 3.0 Hz, 1 H, H-
1¢), 7.17–7.25 (m, 3 H, H-Ar), 7.31–7.40 (m, 2 H, H-Ar).
(20) The Eicar analogue 5 was prepared using standard
Sonogashira coupling to give the protected nucleoside
intermediate: 1H NMR (200 MHz, CDCl3): d = 0.27 (s, 9 H,
TMS), 1.37 (t, J = 7.2 Hz, 3 H, CH3), 2.02 (s, 3 H, Ac), 2.09
(s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.12 (dd, J = 12.9, 5.4 Hz,
Synlett 2009, No. 13, 2123–2128 © Thieme Stuttgart · New York