Organometallics
Article
3
Hz, 2H), 7.45 (tt, JHH 6.3 Hz, 1.3 Hz, 2H), 7.40−7.34 (m, 6H). 13C
ASSOCIATED CONTENT
* Supporting Information
Full experimental details for all reactions and crystallographic
data. This material is available free of charge via the Internet at
■
{1H} NMR (CDCl3 100 MHz) δ 148.8, 135.9, 135.5, 134.0, 132.7,
130.7, 130.1, 128.1, 127.8, 121.2 ppm. 29Si {1H} NMR (CDCl3 80
MHz) δ −12.7 ppm. HRMS Found: 335.1245 m/z (expected for M+
335.1251). Elemental analysis expected C 85.85%, H 5.78%, Found: C
85.19%, H 5.42%.
S
5b 2,7-Di-tert-butyl-9,9-diphenyl-9-silafluorene. In an oven-
dried J. Youngs tap fitted Schlenk tube, 86 mg of bis(4,4′-di-tert-
butylbiphenyl-2-yl)silane was added to a solution of BCF (10 mg, 5
mol %) in anhydrous o-DCB. This solution was agitated for 5 min
before the addition of Cl2-py (3 mg 5 mol %) and then sealed and
heated to 100 °C for 96 h. The solution was passed through a plug of
silica and then dried under vacuum. Further purification by flash
column chromatography (eluent: pentane) and drying gave 74 mg of
AUTHOR INFORMATION
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
■
We thank the Royal Society (M.J.I.) and the University of
Manchester (L.D.C.) for support. This work was also funded by
the EPSRC (grant number EP/K039547/1).
1
5b as a white powder (87% isolated yield). H and 13C {1H} data in
accordance with the literature.9 29Si{1H} NMR (CDCl3 80 MHz) δ
−11.5 ppm.
REFERENCES
■
5d 9,9-Di-iso-butyl-9-silafluorene. In an oven-dried J. Youngs
tap fitted Schlenk tube, 1 mL of 2-(di-iso-butylsilyl)biphenyl was added
to a solution of BCF (86 mg, 5 mol %) in anhydrous o-DCB. This
solution was agitated for 5 min before the addition of Cl2-py (25 mg 5
mol %) and then sealed and heated to 100 °C for 96 h. The solution
was passed through a plug of silica and then dried under vacuum.
Further purification by flash column chromatography (eluent:
pentane) and drying gave 78 mg of 5d as a colorless oil (79%
(1) Murata, H.; Malliaras, G. G.; Uchida, M.; Shen, Y.; Kafafi, Z. H.
Chem. Phys. Lett. 2001, 339, 161−166.
(2) (a) Corey, J. Y. Adv. Organomet. Chem. 2011, 59, 1. (b) Beaupre,
́
S.; Boudreault, P.-L. T.; Leclerc, M. Adv. Mater. 2010, 22, E6−E27.
(3) (a) Hong, J.-H.; Boudjouk, P.; Castellino, S. Organometallics
1994, 13, 3387−3389. (b) West, R.; Sohn, H.; Bankwitz, J.; Calabrese,
J.; Apeloig, Y.; Mueller, T. J. Am. Chem. Soc. 1995, 117, 11608−11609.
(c) Freeman, W. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L.
Angew. Chem., Int. Ed. 1996, 35, 882−884.
(4) Yamaguchi, S.; Tamao, K. J. Chem. Soc., Dalton Trans. 1998,
3693−3702.
(5) Zhan, X.; Barlow, S.; Marder, S. R. Chem. Commun. 2009, 1948−
1955.
1
3
isolated yield). H NMR (CD2Cl2 400 MHz) δ 7.84 (d, JHH 7.8 Hz,
2H), 7.66 (d, 3JHH 7.0 Hz, 2H), 7.42 (t, 3JHH 7.8 Hz, 2H), 7.26 (t, 3JHH
7.3 Hz, 2H), 1.71 (septet, 3JHH 6.5 Hz, 2H), 0.98 (d, 3JHH 7.0 Hz, 4H),
0.81 (d, JHH 6.5 Hz, 12H). 13C {1H} NMR (CD2Cl2 100 MHz) δ
3
148.7, 139.1, 134.0, 130.5, 127.8, 121.4, 26.5, 25.8, 24.3 ppm. 29Si {1H}
NMR (CD2Cl2 80 MHz) δ 1.36 ppm. HRMS Found: 294.1800 m/z,
(expected for M+ 294.1798).
(6) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1955, 77, 6380−
6381.
(7) For select metal-catalyzed silafluorene syntheses: (a) Yabusaki,
Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi, Y.; Nishihara, H.
Chem.Eur. J. 2010, 16, 5581−5585. (b) Ureshino, T.; Yoshida, T.;
Kuninobu, Y.; Takai, K. J. Am. Chem. Soc. 2010, 132, 14324−14326.
(c) Shimizu, M.; Mochida, K.; Hiyama, T. Angew. Chem., Int. Ed. 2008,
47, 9760−9764. (d) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami,
M. Org. Lett. 2007, 9, 133−136.
(8) For select metal-catalyzed silaindene syntheses: (a) Matsuda, T.;
Yamaguchi, Y.; Murakami, M. Synlett 2008, 561−564. (b) Matsuda, T.;
Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Chem. Commun. 2008,
2744−2746. (c) Zhang, Q.-W.; An, K.; He, W. Angew. Chem., Int. Ed.
2014, 53, 5667−5671.
(9) (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc.
2009, 131, 14192−14193. (b) Furukawa, S.; Kobayashi, J.; Kawashima,
T. Dalton Trans. 2010, 39, 9329−9336.
(10) Arii, H.; Kurihara, T.; Mochida, K.; Kawashima, T. Chem.
Commun. 2014, 50, 6649−6652.
(11) (a) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47,
13a 2-Methyl-1,1-diphenyl-1-silaindene. In an oven-dried J.
Youngs tap fitted Schlenk tube, 73 μL of diphenyl silane was added to
a solution of BCF (10 mg, 5 mol %) and 49 μL of 1-phenyl-1-propyne
in anhydrous CH2Cl2. This solution was then sealed and heated to 60
°C for 4 h. One equivalent of Cl2-py (58 mg) was added to the
reaction mixture before being sealed and heated for a further 72 h at
60 °C. Preparative TLC with an eluent of hexane:CH2Cl2 (9:1) lead to
several bands. Taking the top two-thirds of the top band gave ca. 82%
of the 1,1-diphenyl-2-methyl-1-silaindene (13a) and 18% of the cis-
1
and trans-vinylsilane mixture (12a). H NMR (CD2Cl2 400 MHz) δ
7.62−7.60 (m, 5H), 7.46−7.33 (m, 7H), 7.27−7.23 (m, 1H), 7.19 (t,
3JHH 7.3 Hz, 1H), 7.13 (s, br, 1H), 2.16 (d, 4JHH 1.3 Hz, 3H). 13C {1H}
NMR (CDCl3 100 MHz) δ 145.6, 135.7, 135.4, 134.3, 133.1, 132.3,
130.0, 128.2, 127.8, 126.3, 18.0 ppm. 29Si {1H} NMR (CD2Cl2 80
MHz) δ −9.16 ppm. HRMS Found: 298.1165 m/z, (expected for M+
298.1172).
13b 2-Ethyl-1,1-diphenyl-1-silaindene. In an oven-dried J.
Youngs tap fitted Schlenk tube, 73 μL of diphenyl silane was added to
a solution of BCF (10 mg, 5 mol %) and 56 μL of 1-phenyl-1-butyne
in anhydrous CH2Cl2. This solution was then sealed and heated to 60
°C for 2 h. One equivalent of Cl2-py (58 mg) was added to the
reaction mixture before being sealed and heated for a further 24 h at
60 °C. Preparative TLC with an eluent of hexane:CH2Cl2 (9:1) lead to
several bands. Taking the top two-thirds of the top band gave 89% of
the 1,1-diphenyl-2-ethyl-1-silaindene (13b) and 11% of the cis- and
5997−6000. (b) Houghton, A. Y.; Hurmalainen, J.; Mansikkamaki, A.;
̈
Piers, W. E.; Tuononen, H. M. Nat. Chem. 2014, 6, 983−988.
(12) Curless, L. D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem.
Commun. 2014, 50, 5270−5272.
(13) For silicon substituent scrambling mediated by cationic silicon
species, see: (a) Schafer, A.; Reißmann, M.; Schafer, A.; Saak, W.;
̈
̈
Haase, D.; Muller, T. Angew. Chem., Int. Ed. 2011, 50, 12636−12638.
̈
́ ́ ́
(b) Muther, K.; Hrobarik, P.; Hrobarikova, V.; Kaupp, M.; Oestreich,
̈
M. Chem.Eur. J. 2013, 19, 16579−16594.
(14) For a recent organo-electronic device utilizing a dithienosilole
containing compound, see: Sun, Y.; Welch, G. C.; Leong, W. L.;
Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2012, 11, 44−48.
(15) Clark, E. R.; Ingleson, M. J. Angew. Chem., Int. Ed. 2014, 53,
11306−11309.
1
trans-vinylsilane. H NMR (CDCl3 400 MHz) δ 7.64−7.62 (m, 4H),
3
3
7.59 (d, JHH 7.6 Hz, 1H), 7.45−7.33 (m, 7H), 7.26 (d, JHH 7.6 Hz,
4
3
4
1H), 7.18 (dt, JHH 1.0 Hz, JHH 7.6 Hz, 1H), 7.13 (t, JHH 1.0 Hz,
4
3
3
1H), 2.56 (dq, JHH 1.8 Hz, JHH 7.3 Hz, 2H), 1.11 (t, JHH 7.6 Hz,
3H). 13C {1H} NMR (CDCl3 100 MHz) δ 150.3, 148.2, 143.2, 135.4,
135.2, 133.0, 132.5, 130.3, 130.0, 128.1, 126.3, 124.6, 25.5, 13.8 ppm.
29Si {1H} NMR (CDCl3 0 MHz) δ −9.11 ppm. HRMS Found:
312.1329 m/z, (expected for M+ 312.1338).
(16) Klare, H. F. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.;
Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312−3315.
(17) Holthausen, M. H.; Mehta, M.; Stephan, D. W. Angew. Chem.,
Int. Ed. 2014, 53, 6538−6541.
7245
dx.doi.org/10.1021/om501033p | Organometallics 2014, 33, 7241−7246