B. I. Wilke et al. / Tetrahedron Letters 51 (2010) 6871–6873
6873
2
2
6. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357–1358.
7. Newkome, G. R.; Sauer, J. D.; McClure, G. L. Tetrahedron Lett. 1973, 18, 1599–
Acknowledgments
1
602.
The authors would like to thank Professor David F. Wiemer
from The University of Iowa for meaningful discussions of this pro-
ject and Dr. Dale C. Swenson from The University of Iowa for his
assistance with the single crystal diffraction analysis. We would
also like to thank Drs. Steven C. Cermak and Karl Vermillion from
USDA-NCAUR for their help with the 500 MHz NMR spectra. This
research was supported by the Knox College Richter Memorial
Scholars Program, the Knox College Ford Foundation Research Fel-
lows Program, and the Knox College Ronald E. McNair Early Entry
Fellowship Program.
28. Magnus, P.; Giles, M.; Bonnert, R.; Kim, C. S.; McQuire, L.; Merritt, A.; Vicker, N.
J. Am. Chem. Soc. 1992, 114, 4403–4405.
2
9. General procedure for the preparation of derivatives 9: To a solution of (À)-(3-
oxocamphorsulfonyl)imine (8; 7.00 g, 30.7 mmol) in CH Cl (105 mL) was
2
2
added 1,8-diazabicyclo[5.4.0]undec-7-ene (23.0 mL, 153 mmol, 5 equiv), and
2-bromoethanol (11.0 mL, 153 mmol, 5 equiv). The mixture was heated to
reflux and stirred for 1 h. The mixture was allowed to cool to rt and
dichloromethane (100 mL) was added. The reaction mixture was washed
with satd aq NH
4
Cl (2 Â 100 mL) and the organic layer was dried over MgSO
4
,
filtered, and concentrated in vacuo to yield the crude product as a mix of
yellow and orange solids. The solid was crystallized from 100% ethanol to yield
spirooxazolidine 9a as long, white needle-like crystals (7.23 g, 86%). Mp 234–
, c 1.0); 1H NMR (500 MHz, CDCl
D 3 3
a] +34.1 (CHCl ) d 4.05–4.12 (m,
2
35 °C; [
2H), 3.99 (dd, J = 8.55, 15.96 Hz, 1H), 3.65–3.72 (m, 1H), 3.43 (AB quartet,
J = 13.81 Hz, 2H), 2.38 (d, J = 5.70 Hz, 1H), 2.31 (ddd, J = 3.25, 9.13, 12.29 Hz,
References and notes
1
1
H), 2.11 (dddd, J = 3.26, 5.70, 11.70, 13.90 Hz, 1H), 1.96 (ddd, J = 5.23, 11.70,
1.70 Hz, 1H), 1.82 (ddd, J = 5.33, 9.13, 13.90 Hz, 1H), 1.29 (s, 3H), 1.12 (s, 3H);
1.
2.
3.
4.
5.
6.
7.
Rohloff, J. C.; Dyson, N. H.; Gardner, J. O.; Alfredson, T. V.; Sparacino, M. L.;
Robinson, J., III J.Org. Chem. 1993, 58, 1935–1938.
Reider, P. J.; Davis, P.; Hughes, D. L.; Grabowski, E. J. J. J. Org. Chem. 1987, 52,
13
C NMR (125 MHz, CDCl
2.9, 22.2, 18.5; DEPT (125 MHz, 135°, CDCl
À), 26.1 (À), 22.9 (À), 22.2 (+), 18.5 (+). Anal. Calcd for C12
H, 6.32; N, 5.16. Found: C, 53.20; H, 6.28; N, 5.24.
3
) d 208.6, 100.5, 65.1, 58.9, 52.2, 49.8, 46.3, 44.0, 26.1,
) d 65.1 (À), 58.9 (+), 49.8 (À), 46.3
17NO S: C, 53.12;
2
(
3
H
4
9
55–957.
Cao, X.; Liu, F.; Lu, W.; Chen, G.; Yu, G.-A.; Liu, S. H. Tetrahedron 2008, 64, 5629–
636.
Pham, T. Q.; Pyne, S. G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70,
369–6377.
3
3
0. Details of X-ray diffraction analysis for compounds 9a, 9b, 10a, and 10b will be
published elsewhere: Wilke, B.I.; Goodenough, A.K.; Bausch, C.C.; Cline, E.N.;
Abrams, M.L.; Fayer, E.L.; Swenson, D.C.; Cermak, D.M. Acta Cryst. 2010, C66,
o600–o605.
5
6
Lee, J.; Lee, Y.-I.; Kang, M. J.; Lee, Y.-J.; Jeong, B.-S.; Lee, J.-H.; Kim, M.-J.; Choi, J.;
Ku, J.-M.; Park, H.-G.; Jew, S.-S. J. Org. Chem. 2005, 70, 4158–4161.
Feroci, M.; Orsini, M.; Palombi, L.; Sotgiu, G.; Colapietro, M.; Inesi, A. J. Org.
Chem. 2004, 69, 487–494.
Garner, P.; Dogan, O.; Youngs, W. J.; Kennedy, V. O.; Protasiewicz, J.; Zaniewski,
R. Tetrahedron 2001, 57, 71–85.
1. Compound 9b: The solid was crystallized from 100% ethanol to yield
spirooxazine 9b as a white crystalline solid (61%). Mp 184–185 °C; [
(
a
]
D
À5.5
, c 1.0); 1H NMR (500 MHz, CDCl
3 3
CHCl ) d 4.51 (ddd, J = 2.67, 11.65, 13.20 Hz,
1
1
2
3
2
4
C
H), 3.99–4.02 (m, 1H), 3.78 (ddd, J = 3.56, 13.06, 14.72 Hz, 1H), 3.64–3.68 (m,
H), 3.34 (s, 2H), 2.37–2.47 (m, 1H), 2.34 (d, J = 5.70 Hz, 1H), 2.29–2.33 (m, 1H),
.00–2.07 (m, 1H), 1.77–1.85 (m, 2H), 1.34–1.38 (m, 1H), 1.19 (s, 3H), 1.08 (s,
8
9
.
.
Garner, P.; Dogan, O.; Pillai, S. Tetrahedron Lett. 1994, 35, 1653–1656.
Kim, B. H.; Curran, D. P. Tetrahedron 1993, 49, 293–318.
13
H); C NMR (125 MHz, CDCl
3
) d 206.3, 87.5, 63.2, 59.3, 54.5, 48.2, 44.0, 38.0,
) d 63.1 (À), 59.3 (+),
8.2 (À), 38.0 (À), 24.6 (À), 23.1 (À), 22.0 (+), 22.0 (À), 19.1 (+). Anal. Calcd for
19NO S: C, 54.72; H, 6.71; N, 4.91. Found: C, 54.69; H, 6.70; N, 4.88.
4.6, 23.1, 22.0 (2C), 19.1; DEPT (125 MHz, 135°, CDCl
3
1
1
0. Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241–1250.
1. Davis, F. A.; Weismiller, M. C.; Murphy, C. K.; Reddy, R. T.; Chen, B.-C. J. Org.
Chem. 1992, 57, 7274–7285.
13
H
4
3
2. General procedure for the preparation of exo-hydroxy derivatives 10: To a
1
1
2. Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919–934.
3. Davis, F. A.; Reddy, R. E.; Kasu, P. V. N.; Portonovo, P. S.; Carroll, P. J. J. Org. Chem.
mixture of LiAlH (1.21 g, 31.8 mmol, 1.2 equiv) in THF (450 mL) at 0 °C was
4
added spirooxazolidine 9a (7.24 g, 26.7 mmol) in portions. The mixture was
heated to reflux while stirring for 12 h. The mixture was cooled to 0 °C and
methanol (250 mL) was added dropwise. Solvent was removed from the
mixture in vacuo until a white solid/gray residue remained. The solid was
dissolved in 20% KOH (150 mL). The resulting mixture was continuously
extracted with CH Cl . The organic layer was dried over MgSO , filtered, and
2 2 4
concentrated in vacuo to yield a mix of white and yellow solids. The solid was
crystallized from 100% ethanol to yield exo-hydroxy spirooxazolidine 10a as
1
997, 62, 3625–3630.
14. Cermak, D. M.; Du, Y.; Wiemer, D. F. J. Org. Chem. 1999, 64, 388–393.
15. Pogatchnik, D. M.; Wiemer, D. F. Tetrahedron Lett. 1997, 38, 3495–3498.
16. Davis, F. A.; Reddy, G. V.; Chen, B.-C.; Kumar, A.; Haque, M. S. J. Org. Chem. 1995,
60, 6148–6153.
17. Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434–9453.
18. Chen, B.-C.; Weismiller, M. C.; Davis, F. A. Tetrahedron 1991, 47, 173–182.
19. Bach, R. D.; Andres, J. L.; Davis, F. A. J. Org. Chem. 1992, 57, 613–618.
20. Chen, B.-C.; Murphy, C. K.; Kumar, A.; Reddy, R. T.; Clark, C.; Zhou, P.; Lewis, B.
M.; Gala, D.; Mergelsberg, I.; Scherer, D.; Buckley, J.; DiBenedetto, D.; Davis, F.
A. Org. Synth. 1996, 73, 159–173.
white needle-like crystals (4.34 g, 60%). Mp 201–205 °C; [
a
]
D
À6.2 (CHCl
3
, c
.0); 1H NMR (500 MHz, CDCl
1
3
) d 4.11 (ddd, J = 4.80, 8.07, 12.57 Hz, 1H), 3.97
(
dd, J = 7.77, 14.68 Hz, 1H), 3.81 (ddd, J = 4.80, 7.77, 8.43 Hz, 1H), 3.68 (d,
J = 4.68 Hz, 1H), 3.44 (ddd, J = 6.84, 8.72, 12.25 Hz, 1H), 3.38 (AB quartet,
2
2
1. Bartlett, P. D.; Knox, L. H. Org. Synth. 1973, Coll. Vol. V, 196–198.
2. Towson, J. C.; Weismiller, M. C.; Lai, G. S.; Sheppard, A. C.; Davis, F. A. Org. Synth.
J = 13.60 Hz, 2H), 2.07 (ddd, J = 2.98. 9.17, 12.25 Hz, 1H), 1.89–2.01 (m, 3H),
13
1
.68–1.76 (m, 1H), 1.46 (s, 3H), 1.29–1.39 (m, 1H), 1.01 (s, 3H); C NMR
1
990, 69, 158–168.
(
3
125 MHz, CDCl ) d 110.0, 83.1, 63.0, 53.2, 52.1, 50.6, 48.6, 46.4, 25.7, 24.6,
2
3. Synthesis of (À)-(3-oxocamphorsulfonyl)imine (8) was accomplished
2
4
5
2.6, 21.6; DEPT (125 MHz, 135°, CDCl ) d 83.1 (+), 63.0 (À), 52.1 (+), 50.6 (À),
3
20
following the procedure delineated by B.-C. Chen et al. (Ref. ) with the
following additions: The reaction mixture was vacuum filtered through a pad
6.4 (À), 25.7 (À), 24.6 (À), 22.6 (+), 21.6 (+). Anal. Calcd for C12
4
H19NO S: C,
2.73; H, 7.01; N, 5.12. Found: C, 52.97; H, 6.76; N, 5.08.
of Celite and rinsed with CH
concentrated in vacuo and the resulting yellow and orange solids were
dissolved in minimal CH
gel and rinsed with CH
concentrated in vacuo to yield (À)-(3-oxocamphorsulfonyl)imine (8) as a
yellow crystalline solid (90%). This product has spectroscopic data identical to
Chen et al. and was used in a timely manner to avoid decomposition. We have
also shelved the purified imine for over three months and have seen no signs of
decomposition.
2 2
Cl until the filtrate was colorless. The filtrate was
3
3. Compound 10b: Purification by flash column chromatography (5:95 acetone/
chloroform) gave exo-hydroxy spirooxazine 10b as a white crystalline solid
2
Cl
Cl
2
. The solution was vacuum filtered through silica
until the filtrate was colorless. The filtrate was
, c 1.0); 1H NMR (500 MHz, CDCl
3 3
) d
.03–4.06 (m, 3H), 3.65–3.76 (m, 2H), 3.27 (AB quartet, J = 13.54 Hz, 2H), 2.37–
.49 (m, 1H), 2.00–2.06 (m, 2H), 1.83–1.91 (m, 2H), 1.49–1.56 (m, 1H), 1.42 (s,
3
H), 1.22–1.31 (m, 2H), 0.97 (s, 3H); C NMR (125 MHz, CDCl ) d 97.7, 81.9,
(
71%). Mp 186–188 °C; [
a
]
D
À27.0 °C (CHCl
2
2
4
2
3
6
1
2
13
2.9, 55.6, 52.6, 48.9, 48.7, 39.5, 25.0, 23.9, 22.3, 22.0, 21.9; DEPT (125 MHz,
35°, CDCl ) d 81.9 (+), 62.9 (À), 52.6 (+), 48.9 (À), 39.5 (À), 25.0 (À), 23.9 (À),
2.3 (+), 22.0 (+), 21.9 Anal. Calcd for C13 21NO S: C, 54.33; H, 7.37; N, 4.87.
3
H
4
2
2
4. Hwu, J. R.; Leu, L.-C.; Robl, J. A.; Anderson, D. A.; Wetzel, J. M. J. Org. Chem. 1987,
Found: C, 54.40; H, 7.46; N, 4.90.
52, 188–191.
5. Hwu, J. R.; Wetzel, J. M. J. Org. Chem. 1985, 50, 3946–3948.