Full Paper
indexed and processed using APEX3.[42] The space groups were as-
signed and the structures were solved by direct methods using
XPREP within the SHELXTL suite of programs[43] and refined
using Shelxl and Shelxle.[44] Additional crystallographic data for
HC2NAPMes, [Et3NC2H2NAPMes]OTf, 1a, 1c and 3b are provided in
Table S1 and Table S2 and in the SI (handling of H atoms, descrip-
tion of disorder, twinning and special refinement details).
[15] T. L. Schull, J. G. Kushmerick, C. H. Patterson, C. George, M. H. Moore,
S. K. Pollack, R. Shashidhar, J. Am. Chem. Soc. 2003, 125, 3202–3203; A. S.
Blum, T. Ren, D. A. Parish, S. A. Trammell, M. H. Moore, J. G. Kushmerick,
G.-L. Xu, J. R. Deschamps, S. K. Pollack, R. Shashidhar, J. Am. Chem. Soc.
2005, 127, 10010–10011; A. K. Mahapatro, J. Ying, T. Ren, D. B. Janes,
Nano Lett. 2008, 8, 2131–2136; Y. Tanaka, Y. Kato, T. Tada, S. Fujii, M.
Kiguchi, M. Akita, J. Am. Chem. Soc. 2018, 140, 10080–10084; B. Kim,
J. M. Beebe, C. Olivier, S. Rigaut, D. Touchard, J. G. Kushmerick, X.-Y. Zhu,
C. D. Frisbie, J. Phys. Chem. C 2007, 111, 7521–7526.
[16] F. B. Meng, Y. M. Hervault, Q. Shao, B. H. Hu, L. Norel, S. Rigaut, X. D.
Chen, Nat. Commun. 2014, 5, Art. 3023; H. Zhu, S. J. Pookpanratana, J. E.
Bonevich, S. N. Natoli, C. A. Hacker, T. Ren, J. S. Suehle, C. A. Richter, Q.
Li, ACS Appl. Mater. Interfaces 2015, 7, 27306–27313.
CCDC 1937327 (for 1a), 1937328 (for 1c), 1937329 (for 3b), 193730
(for HC2NAPMes), and 193731 (for [Et3NC2H2NAPMes]OTf) contain the
[17] T. Ren, Chem. Commun. 2016, 52, 3271–3279.
[18] S. D. Banziger, T. Ren, J. Organomet. Chem. 2019, 885, 39–48.
[19] S. D. Banziger, T. D. Cook, S. N. Natoli, P. E. Fanwick, T. Ren, J. Organomet.
Chem. 2015, 799–800, 1–6.
[20] S. D. Banziger, X. Li, J. Valdiviezo, M. Zeller, P. Zhang, D. N. Beratan, I.
Rubtsov, T. Ren, Inorg. Chem. 2019, 58, 15487–15497.
[21] S. N. Natoli, M. Zeller, T. Ren, Inorg. Chem. 2016, 55, 5756–5758.
[22] S. N. Natoli, M. Zeller, T. Ren, Inorg. Chem. 2017, 56, 10021–10031.
[23] C. J. McAdam, A. R. Manning, B. H. Robinson, J. Simpson, Inorg. Chim.
Acta 2005, 358, 1673–1682.
[24] C. J. McAdam, J. L. Morgan, B. H. Robinson, J. Simpson, P. H. Rieger, A. L.
Rieger, Organometallics 2003, 22, 5126–5136.
Acknowledgments
We gratefully acknowledge financial support from the National
Science Foundation (CHE 1764347 for research and CHE
1625543 for X-ray diffractometers). We would like to thank Lind-
sey A. Miller and Brandon L. Mash for assistance with X-ray data
collection. S. D. B. thanks Purdue University for a Cagiantas Fel-
lowship.
[25] C. J. McAdam, B. H. Robinson, J. Simpson, T. Tagg, Organometallics 2010,
29, 2474–2483.
[26] A. Saini, K. R. J. Thomas, RSC Adv. 2016, 6, 71638–71651.
[27] G. W. Fischer, Z. Chem. 1968, 8, 269–270.
Keywords: Cobalt · Dissymmetric complexes · Alkyne
ligands · Electrochemistry · Synthesis design
[28] T. Shimada, I. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126,
10546–10547.
[29] S. Cacchi, G. Fabrizi, P. Pace, J. Org. Chem. 1998, 63, 1001–1011.
[30] X. Zeng, R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010,
49, 942–945; Angew. Chem. 2010, 122, 954.
[31] T. D. Cook, P. E. Fanwick, T. Ren, Organometallics 2014, 33, 4621–4624.
[32] E. C. Judkins, M. Zeller, T. Ren, Inorg. Chem. 2018, 57, 2249–2259; P. U.
Thakker, R. G. Aru, C. Sun, W. T. Pennington, A. M. Siegfried, E. C. Marder,
P. S. Wagenknecht, Inorg. Chim. Acta 2014, 411, 158–164.
[33] B. M. Oxley, B. Mash, M. Zeller, S. Banziger, T. Ren, Acta Crystallogr., Sect.
E 2018, 74, 522–529.
[34] P. U. Thakker, C. Sun, L. Khulordava, C. D. McMillen, P. S. Wagenknecht, J.
Organomet. Chem. 2014, 772, 107–112.
[35] W. A. Hoffert, M. K. Kabir, E. A. Hill, S. M. Mueller, M. P. Shores, Inorg.
Chim. Acta 2012, 380, 174–180.
[36] T. D. Cook, S. N. Natoli, P. E. Fanwick, T. Ren, Organometallics 2015, 34,
686–689.
[37] T. D. Cook, S. N. Natoli, P. E. Fanwick, T. Ren, Organometallics 2016, 35,
1329–1338; S. N. Natoli, T. D. Cook, T. R. Abraham, J. J. Kiernicki, P. E.
Fanwick, T. Ren, Organometallics 2015, 34, 5207–5209; S. N. Natoli, T. J.
Azbell, P. E. Fanwick, M. Zeller, T. Ren, Organometallics 2016, 35, 3594–
3603.
[38] Y. Liu, H.-Y. Wang, G. Chen, X.-P. Xu, S.-J. Ji, Aust. J. Chem. 2009, 62, 934–
940.
[39] M. Chrominski, A. Lewalska, D. Gryko, Chem. Commun. 2013, 49, 11406–
11408.
[40] M. Younus, N. J. Long, P. R. Raithby, J. Lewis, N. A. Page, A. J. P. White,
D. J. Williams, M. C. B. Colbert, A. J. Hodge, M. S. Khan, D. G. Parker, J.
Organomet. Chem. 1999, 578, 198–209.
[41] B. Bosnich, M. L. Tobe, G. A. Webb, Inorg. Chem. 1965, 4, 1109–1112.
[42] APEX3 v2016.9–0, Saint V8.34A, Saint V8.37A; 2016.
[43] SHELXTL suite of programs, version 6.14; 2000–2003; G. M. Sheldrick,
Acta Crystallogr., Sect. A 2008, 64, 112–122.
[1] M. R. Wasielewski, Chem. Rev. 1992, 92, 435–461.
[2] P. F. Barbara, T. J. Meyer, M. A. Ratner, J. Phys. Chem. 1996, 100, 13148–
13168; B. Albinsson, J. Mårtensson, J. Photochem. Photobiol. C 2008, 9,
138–155.
[3] A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 2000, 33, 269–277.
[4] Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, J. Am. Chem. Soc.
2004, 126, 3357–3367.
[5] J. L. Sessler, B. Wang, A. Harriman, J. Am. Chem. Soc. 1995, 117, 704–714.
[6] A. C. Benniston, A. Harriman, Chem. Soc. Rev. 2006, 35, 169–179.
[7] M. Delor, P. A. Scattergood, I. V. Sazanovich, A. W. Parker, G. M. Greetham,
A. J. H. M. Meijer, M. Towrie, J. A. Weinstein, Science 2014, 346, 1492–
1495.
[8] P. A. Scattergood, M. Delor, I. V. Sazanovich, O. V. Bouganov, S. A. Tikhom-
irov, A. S. Stasheuski, A. W. Parker, G. M. Greetham, M. Towrie, E. S. Davies,
A. J. H. M. Meijer, J. A. Weinstein, Dalton Trans. 2014, 43, 17677–17693.
[9] A. Haque, R. A. Al-Balushi, I. J. Al-Busaidi, M. S. Khan, P. R. Raithby, Chem.
Rev. 2018, 118, 8474–8597.
[10] C.-L. Ho, Z.-Q. Yu, W.-Y. Wong, Chem. Soc. Rev. 2016, 45, 5264–5295; P. J.
Low, M. I. Bruce, Adv. Organomet. Chem. 2001, 48, 71–288; B. Pigulski, N.
Gulia, S. Szafert, Eur. J. Org. Chem. 2019, 1420–1445; A. Triadon, G. Grel-
aud, N. Richy, O. Mongin, G. J. Moxey, I. M. Dixon, X. Yang, G. Wang,
A. Barlow, J. Rault-Berthelot, M. P. Cifuentes, M. G. Humphrey, F. Paul,
Organometallics 2018, 37, 2245–2262; A. Haque, R. A. Al-Balushi, M. S.
Khan, J. Organomet. Chem. 2019, 897, 95–106.
[11] S. Szafert, J. A. Gladysz, Chem. Rev. 2003, 103, 4175–4206; S. Szafert, J. A.
Gladysz, Chem. Rev. 2006, 106, PR1–PR33.
[12] N. J. Long, C. K. Williams, Angew. Chem. Int. Ed. 2003, 42, 2586–2617;
Angew. Chem. 2003, 115, 2690.
[13] J.-P. Launay, Chem. Soc. Rev. 2001, 30, 386–397; T. Ren, Organometallics
2005, 24, 4854–4870; K. Costuas, S. Rigaut, Dalton Trans. 2011, 40, 5643–
5658; Y. Tanaka, M. Akita, Coord. Chem. Rev. 2019, 388, 334–342.
[14] R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J. A. Gladysz, J. Am. Chem.
Soc. 2000, 122, 810–822; M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P.
Best, G. A. Heath, J. Am. Chem. Soc. 2000, 122, 1949–1962; Z. Cao, B. Xi,
D. S. Jodoin, L. Zhang, S. P. Cummings, Y. Gao, S. F. Tyler, P. E. Fanwick,
R. J. Crutchley, T. Ren, J. Am. Chem. Soc. 2014, 136, 12174–12183.
[44] G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8; C. B. Hübschle,
G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
Received: October 4, 2019
Eur. J. Inorg. Chem. 2019, 4766–4772
4772
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim