Competitive Consecutive Reactions using Micromixing
A R T I C L E S
Scheme 2
Figure 1. Schematic representation of mixing of the determined reaction
course for competitive consecutive reactions.
and industrial viewpoints.6 The most widely accepted definition
of microreactors is “reactors having microstructures for chemical
reactions”. According to this definition, microreactors are not
necessary small devices in total size. They can be relatively
large as far as they contain microstructures. It is also important
to note that microreactors do not necessarily mean reactors for
the production of a small quantity of compounds. Microreactors
can be applied for industrial scale production.7
With the advancement of microfabrication technology to
make various kinds of microreactors including micromixers and
microheat exchangers, the development of new synthetic
methodologies based upon the inherent features that exist at
the micrometer scale is strongly needed. It is generally expected
that extremely fast and exothermic reactions can be conducted
in a highly controlled manner in microreactors by virtue of the
advantages of efficient mixing and heat transfer. In this paper,
we focus on the efficient mixing ability of micromixers8 to solve
the problem of disguised selectivity of extremely fast competi-
tive consecutive reactions.9
chemical reactions.2 Rys wrote “If we add a solution of species
B to a solution of species A, eddies of solution B in solution A
are created. As a first approximation, these eddies can be
considered as spherical drops with constant mean radius R. The
lifetime of such an eddy can be estimated to be 0.01-1 s. The
radius R depends on the intensity of the turbulence created by
mixing and may be controlled, for example, by mechanical
stirring. From the theory of turbulence, one can estimate the
minimum mean size of such elements of liquid. For the common
solvents water, methanol, and ethanol, the mean minimum radius
R of the eddies in optimal turbulence is approximately 10-2 to
10-3 cm.”2a Rys also wrote, “After a first time interval, A and
B will have reacted at the periphery of an eddy to produce the
primary product P1. In a further time interval, a molecule B
can react with a further molecule A to form P1, but only if it
succeeds in diffusing through the peripheral zone of P1
molecules already formed without being trapped there by the
substance P1 in a reaction affording the secondary product P2.
This succeeds less often, the longer the relaxation time of the
diffusion process is in comparison to the relaxation time of the
secondary reaction. In the extreme case, a mixing controlled
reaction will convert all the P1 into P2 before the molecule B
finds a further molecule A. Thus, at the end of the reaction
practically only the secondary product P2 is present, and no
primary product P1 can be detected. In this case, the selectivity
kl/k2 loses its influence on the product distribution.”2b
As an example of competitive consecutive reactions, the
Friedel-Crafts reaction is very popular in organic chemistry
(Scheme 2).10 In the case where the R group is an electron-
(5) For organic synthesis (a) Salimi-Moosavi, H.; Tang, T.; Harrison, D. J. J.
Am. Chem. Soc. 1997, 119, 8716. (b) Chambers, R. D.; Spink, R. C. H.
Chem. Commun. 1999, 883. (c) de Bellefon, C.; Tanchoux, N.; Caravieilhes,
S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed. 2000, 39, 3442. (d)
Suga, S.; Okajima, M.; Fujiwara, K.; Yoshida, J. J. Am. Chem. Soc. 2001,
123, 7941. (e) Yoshida, J.; Suga, S. Chem.sEur. J. 2002, 8, 2651. (f) Watts,
P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.; Styring, P. Chem. Commun.
2001, 990. (g) Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori,
T. Chem. Commun. 2001, 2662. (h) Sands, M.; Haswell, S. J.; Kelly, S.
M.; Skelton, V.; Morgan, D. O.; Styring, P.; Warrington, B. Lab Chip 2001,
1, 64. (i) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip
2001, 1, 100. (j) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.
Chem. Commun. 2002, 1034. (k) Fukuyama, T.; Shinmen, M.; Nishitani,
S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691. (l) Ueno, M.; Hisamoto, H.;
Kitamori, T.; Kobayashi, S. Chem. Commun. 2003, 936. (m) Garcia-Egido,
E.; Spikmans, V.; Wong, S. Y. F.; Warrington, B. H. Lab Chip 2003, 3,
73. (n) Lai, S. M.; Martin-Aranda, R.; Yeung, K. L. Chem. Commun. 2003,
218. (o) Mikami, K.; Yamanaka, M.; Islam, M. N.; Kudo, K.; Seino, N.;
Shinoda, M. Tetrahedron Lett. 2003, 44, 7545. (p) Kobayashi, J.; Mori,
Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S.
Science 2004, 304, 1305. (q) Wu, T.; Mei, Y.; Cabral, J. T.; Xu, C.; Beers,
K. L. J. Am. Chem. Soc. 2004, 126, 9980. (r) Nagaki, A.; Kawamura, K.;
Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J. J. Am. Chem. Soc. 2004,
126, 14702. (s) Horcajada, R.; Okajima, M.; Suga, S.; Yoshida, J. Chem.
Commun. 2005, 1303.
(6) Reviews: for example, (a) DeWitt, S. H. Curr. Opin. Chem. Biol. 1999, 3,
350. (b) Okamoto, H. J. Synth. Org. Chem., Jpn. 1999, 57, 805. (c)
Sugawara, T. Pharmacia 2000, 36, 34. (d) Wo¨rz, O.; Ja¨ckel, K. P.; Richter,
Th.; Wolf, A. Chem. Eng. Sci. 2001, 56, 1029. (e) Haswell, S. J.; Middleton,
R. J.; O’Sullivan, B.; Skelton, V.; Watts, P.; Styring, P. Chem. Commun.
2001, 391. (f) de Mello, A.; Wooton, R. Lab Chip 2002, 2, 7N. (g) Fletcher,
P. D. I.; Haswell, S. J.; Pombo-Villar, E.; Warrington, B. H.; Watts, P.;
Wong, S. Y. F.; Zhang, X. Tetrahedron 2002, 58, 4735. (h) Ja¨hnisch, K.;
Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem., Int. Ed. Engl. 2004, 43,
406.
As described previously, the kinetically based selectivity may
be disguised by the mixing problem. This phenomenon may
occur often in macroscale batch reactors, where the mixing is
not so fast. As a matter of fact, several examples have already
been reported in the literature.3 We envisioned that the problem
of disguised chemical selectivity can be solved by extremely
fast mixing using a microfabricated device, a micromixer.
Microfabricated devices for chemical reactions are generally
called microreactors,4 and they are expected to make a
revolutionary change in chemical synthesis5 from both academic
(2) (a) Rys, P. Acc. Chem. Res. 1976, 10, 345. (b) Rys, P. Angew. Chem., Int.
Ed. Engl. 1977, 12, 807. In the original papers of Rys A is added to B, but
here we consider the reverse addition (addition of B to A).
(3) (a) Agre, C. L.; Dinga, G.; Pflaum, R. J. Org. Chem. 1956, 21, 561. (b)
Stoutland, O.; Helgen, L.; Agre, C. L. J. Org. Chem. 1959, 24, 818. (c)
Tolgyesi, W. S. Can. J. Chem. 1965, 43, 343. (d) Wood, P. B.; Higginson,
W. C. E. J. Chem. Soc. A 1966, 1645. (e) Hanna, S. B.; Hunziker, E.;
Saito, T.; Zollinger, H. HelV. Chim. Acta 1969, 52, l537. (f) Paul, E. L.;
Treyba1, R. E. Am. IChemE J. 1971, 17, 718. (g) Ridd, J. H. Acc. Chem.
Res. 1971, 4, 248. (h) Hunziker, E.; Penton, J. R.; Zollinger, H. HelV. Chim.
Acta 1971, 54, 2043. (i) Bourne, J. R.; Rys, P.; Suter, K. Chem. Eng. Sci.
1977, 32, 711. (j) Bourne, J. R.; Kozicki, F.; Chem. Eng. Sci. 1977, 32,
1538. (k) Kaminski, R.; Lauk, U.; Skraba1, P.; Zollinger, H. HelV. Chim.
Acta 1983, 66, 2002. (l) Jacobson, A. R.; Makris, A. N.; Sayre, L. M. J.
Org. Chem. 1987, 52, 2592. (m) Paul, E. L.; Mahadevan, H.; Foster, J.;
Kennedy, M.; Midler, M. Chem. Eng. Sci. 1992, 47, 2837.
(4) (a) Ehrfeld, W. Microreaction Technology; Springer: Berlin, 1998. (b)
Ehrfeld, W.; Hessel, V.; Lo¨we, H. Microreactors; Wiley-VCH: Weinheim,
2000. (c) Manz, A.; Becker, H. Microsystem Technology in Chemistry and
Life Sciences; Springer: Berlin, 1999. (d) Jensen, K. F. Chem. Eng. Sci.
2001, 56, 293. (e) Hessel, V.; Hardt, S.; Lo¨we, H. Chemical Micro Process
Engineering; Wiley-VCH: Weinheim, 2004.
(7) The use of microreactors toward industrial production: (a) Iwasaki, T.;
Yoshida, J. Macromolecules 2005, 38, 1159. (b) Kawaguchi, T.; Miyata,
H.; Ataka, K.; Mae, K.; Yoshida, J. Angew. Chem., Int. Ed. 2005, 44, 2413.
(8) For example, (a) Kakuta, M.; Bessoth, F. G.; Manz, A. Chem. Record 2001,
1, 395. (b) Stroock, A. D.; Dertinger, S. K. W.; Ajdari, A.; Meziæ, I.;
Stone, H. A.; Whitesides, G. M. Science 2002, 295, 647. (c) Johnson, T.
J.; Ross, D.; Locascio, L. E. Anal. Chem. 2002, 74, 45. (d) Seong, G. H.;
Crooks, R. M. J. Am. Chem. Soc. 2002, 124, 13360. (e) Song, H.; Tice, J.
D.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2003, 42, 768. (f) Zheng, B.;
Roach, L. S.; Ismagilov, R. F. J. Am. Chem. Soc. 2003, 125, 11170. (g)
Song, H.; Ismagilov, R. F. J. Am. Chem. Soc. 2003, 125, 14613.
9
J. AM. CHEM. SOC. VOL. 127, NO. 33, 2005 11667