Angewandte Chemie International Edition
10.1002/anie.202009682
RESEARCH ARTICLE
cytometry system as
technique for cell heterogeneity analysis and cell phenotype
identification and recognition.
a
powerful single-cell measurement
(2016YFF0100303) and Beijing Natural Science Foundation
Essential Research Project (Z170002).
Keywords: mass cytometry • single-cell heterogeneity• mass
tags • surface protein • metabolites
[
1]
a) A. Colman-Lerner, A. Gordon, E. Serra, T. Chin, O. Resnekov, D.
Endy, C. G. Pesce, R. Brent, Nature 2005, 437, 699-706; b) L. Bintu, J.
Yong, Y. E. Antebi, K. McCue, Y. Kazuki, N. Uno, M. Oshimura, M. B.
Elowitz, Science 2016, 351, 720-724; c) M. Yazawa, B. Hsueh, X. Jia,
A. M. Pasca, J. A. Bernstein, J. Hallmayer, R. E. Dolmetsch, Nature
2011, 471, 230-234; d) B. M. Seo, M. Miura, S. Gronthos, P. M. Bartold,
S. Batouli, J. Brahim, M. Young, P. G. Robey, C. Y. Wang, S. T. Shi,
Lancet 2004, 364, 149-155.
[
[
2]
3]
a) D. Wang, S. Bodovitz, Trends Biotechnol. 2010, 28, 281-290; b) A.
Schmid, H. Kortmann, P. S. Dittrich, L. M. Blank, Curr. Opin.
Biotechnol. 2010, 21, 12-20.
a) E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M.
Goldman, I. Tirosh, A. R. Bialas, N. Kamitaki, E. M. Martersteck, J. J.
Trombetta, D. A. Weitz, J. R. Sanes, A. K. Shalek, A. Regev, S. A.
McCarroll, Cell 2015, 161, 1202-1214; b) A. P. Patel, I. Tirosh, J. J.
Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill, B.
V. Nahed, W. T. Curry, R. L. Martuza, D. N. Louis, O. Rozenblatt-
Rosen, M. L. Suva, A. Regev, B. E. Bernstein, Science 2014, 344,
Figure 4. Chemotherapy resistance subtype analysis. (a) Scatter plot of MCF-
7
(circles) and DOX-res MCF-7 (triangles) cells based on CD24 and CD44
expression. (b) Volcano plot of the correlations between the P-values and fold
changes (FD) of normalized intensities for the detected mass tag and metabolite
signals within MCF-7 and DOX-res MCF-7 cells, differential compounds (T test,
P <0.05; FD >2) illustrated as red and blue dots.
1
396-1401; c) P. Zhang, X. Han, J. Yao, N. Shao, K. Zhang, Y. Zhou,
Y. Zu, B. Wang, L. Qin, Angew. Chem. Int. Ed. 2019, 58, 13700-13705.
a) A. J. Hughes, D. P. Spelke, Z. Xu, C.-C. Kang, D. V. Schaffer, A. E.
Herr, Nat. Methods 2014, 11, 749-755; b) Y. Zhu, G. Clair, W. B.
Chrisler, Y. Shen, R. Zhao, A. K. Shukla, R. J. Moore, R. S. Misra, G. S.
Pryhuber, R. D. Smith, C. Ansong, R. T. Kelly, Angew. Chem. Int. Ed.
2018, 57, 12370-12374.
[4]
Conclusion
[
5]
a) R. Zenobi, Science 2013, 342, 1243259; b) M. Fessenden, Nature
2016, 540, 153-155.
In summary, a multi-dimensional organic mass cytometry platform
was developed for the simultaneous analysis of single-cell
proteins and metabolites. Sufficient sensitivity for single-cell
protein detection was achieved with six mass tags-RMTs
assembled on GNPs for signal transformation and amplification.
The online dissociation of RMTs and specific recognition using
antibodies provided the highly sensitive and specific semi-
quantification of six cell surface antigens at the single-cell level. A
facile integrated setup comprising cell injection, cell ordering, and
ionization was established, which could be easily coupled with a
high-resolution mass spectrometer for cytometric measurement.
Cell suspension was analyzed with a throughput of ~40 cells per
minute, providing six protein parameters and ~100 metabolite
parameters at single-cell resolution. Cancer cell phenotypes and
substantial heterogeneity were better distinguished and identified
based on the comprehensive cell surface antigens and cellular
metabolites, achieving more than 95% sensitivity and specificity
for cell typing. Moreover, the drug resistant and stem-like cells
within MCF-7 were recognized based on antigen markers, and
metabolic differences were found for further drug resistance
analysis and stem cell research. Combining significant protein
targets with hundreds of downstream metabolites, the multi-
dimensional mass cytometry offers a high possibility for the deep
understanding of fundamental biological processes such as
differentiation, aging, and pathopoiesis at single-cell level.
[6]
a) T. J. Comi, T. D. Do, S. S. Rubakhin, J. V. Sweedler, J. Am. Chem.
Soc. 2017, 139, 3920-3929; b) L. Zhang, A. Vertes, Angew. Chem. Int.
Ed. 2018, 57, 4466-4477.
M. H. Spitzer, G. P. Nolan, Cell 2016, 165, 780-791.
R. Liu, S. Zhang, C. Wei, Z. Xing, S. Zhang, X. Zhang, Acc. Chem. Res.
[7]
[
[
8]
9]
2016, 49, 775-783.
a) S. C. Bendall, E. F. Simonds, P. Qiu, E.-a. D. Amir, P. O. Krutzik, R.
Finck, R. V. Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky, R. S.
Balderas, S. K. Plevritis, K. Sachs, D. Pe'er, S. D. Tanner, G. P. Nolan,
Science 2011, 332, 687-696; b) C. Boettcher, S. Schlickeiser, M. A. M.
Sneeboer, D. Kunkel, A. Knop, E. Paza, P. Fidzinski, L. Kraus, G. J. L.
Snijders, R. S. Kahn, A. R. Schulz, H. E. Mei, E. M. Hol, B. Siegmund,
R. Glauben, E. J. Spruth, L. D. de Witte, J. Priller, N. B. B. Psy, Nat.
Neurosci. 2019, 22, 78-90.
[10] a) E. K. Neumann, T. J. Comi, S. S. Rubakhin, J. V. Sweedler, Angew.
Chem. Int. Ed. 2019, 58, 5910-5914; b) H. Yao, H. Zhao, X. Zhao, X.
Pan, J. Feng, F. Xu, S. Zhang, X. Zhang, Anal. Chem. 2019, 91, 9777-
9783; c) Z. Yin, X. Cheng, R. Liu, X. Li, L. Hang, W. Hang, J. Xu, X.
Yan, J. Li, Z. Tian, Angew. Chem. Int. Ed. 2019, 58, 4541-4546; d) Q.
Huang, S. Mao, M. Khan, L. Zhou, J. M. Lin, Chem. Commun. 2018, 54,
2595-2598; e) Q. Huang, S. Mao, M. Khan, W. Li, Q. Zhang, J. M. Lin,
Chem. Sci. 2020, 11, 253-256.
[
[
11] G. Li, S. Yuan, S. Zheng, Y. Liu, G. Huang, Anal. Chem. 2018, 90,
3409-3415.
12] a) J. R. Lee, A. Lee, S. K. Kim, K. P. Kim, H. S. Park, W.-S. Yeo,
Angew. Chem. Int. Ed. 2008, 47, 9518-9521; b) Y. Wang, R. Du, L.
Qiao, B. Liu, Chem. Commun. 2018, 54, 9659-9662; c) W. Ma, S. Xu,
H. Nie, B. Hu, Y. Bai, H. Liu, Chem. Sci. 2019, 10, 2320-2325; d) S. Xu,
W. Ma, Y. Bai, H. Liu, J. Am. Chem. Soc. 2019, 141, 72-75.
13] R. K. Manova, S. Joshi, A. Debrassi, N. S. Bhairamadgi, E. Roeven, J.
Gagnon, M. N. Tahir, F. W. Claassen, L. M. W. Scheres, T. Wennekes,
K. Schroen, T. A. van Beek, H. Zuilhof, M. W. F. Nielen, Anal. Chem.
2014, 86, 2403-2411.
[
[
[
[
14] E. W. M. Kemna, R. M. Schoeman, F. Wolbers, I. Vermes, D. A. Weitz,
A. van den Berg, Lab Chip 2012, 12, 2881-2887.
15] N. Samusik, Z. Good, M. H. Spitzer, K. L. Davis, G. P. Nolan, Nat.
Methods 2016, 13, 493-496.
16] a) Y. Sunami, A. Rebelo, J. Kleeff, Cancers 2017, 10, 3; b) E. Currie, A.
Schulze, R. Zechner, T. C. Walther, R. V. Farese, Jr., Cell Metab. 2013,
Acknowledgements
18, 153-161.
[
17] K. Meirelles, L. A. Benedict, D. Dombkowski, D. Pepin, F. I. Preffer, J.
Teixeira, P. S. Tanwar, R. H. Young, D. T. MacLaughlin, P. K.
This work was financially supported by the National Natural
Science Foundation of China (21874003, 21527809, and
Donahoe, X. Wei, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 2358-2363.
2
1728501), National Key R&D Program of China
This article is protected by copyright. All rights reserved.