pinnatoxins,29 pteriatoxins,30 didemniserinolipids,32 as well as,
in 2-hydroxy-exo-brevicomin.33 Finally, water mediated photo-
oxygenation of 2-(β-hydroxyalkyl) furan 13, followed by in situ
treatment with trace acid, affords, in one synthetic operation, 3-
keto-tetrahydrofuran motif 14. This reaction proceeds via an
intramolecular oxa-Michael addition to the intermediate 1,4- ene-
dione (type E, Scheme 2). Similar 3-ketotetrahydrofuran motifs
can be found in a variety of natural products, including; phyl-
lanthocin,34 and pectenotoxins.26
With regard to the photosensitizer, similar results (product dis-
tribution and isolated yields) were observed when either macer-
ated leaves of spinach (a source of chlorophyll), or rose bengal
were used as the photosensitizer instead of spirulina. It was true
that in the case of chopped spinach leaves as the source of the
photosensitizer, the irradiation times were 2–3 times longer than
those needed when using spirulina. When rose bengal was used
as the photosensitizer the irradiation time was reduced to one
fourth of that required by the spirulina system.
5 I. Margaros, T. Montagnon, M. Tofi, E. Pavlakos and
G. Vassilikogiannakis, Tetrahedron, 2006, 62, 5308; T. Montagnon,
M. Tofi and G. Vassilikogiannakis, Acc. Chem. Res., 2008, 41, 1001;
T. Montagnon, D. Noutsias, I. Alexopoulou, M. Tofi and
G. Vassilikogiannakis, Org. Biomol. Chem., 2011, 9, 2031.
6 O. Achmatowicz, P. Bukowski, B. Szechner, Z. Zwierzchowska and
A. Zamojsk, Tetrahedron, 1971, 27, 1973.
7 Y. Lefebvre, Tetrahedron Lett., 1972, 13, 133; R. Laliberte, G. Medawar
and Y. Lefebvre, J. Med. Chem., 1973, 16, 1084.
8 C. Dominguez, A. G. Csaky and J. Plumet, Tetrahedron Lett., 1990, 31,
7669.
9 E. A. Couladouros and M. P. Georgiadis, J. Org. Chem., 1986, 51, 2725.
10 B. M. Adger, C. Barrett, J. Brennan, M. A. McKervey and R. W. Murray,
J. Chem. Soc., Chem. Commun., 1991, 1553.
11 G. Piancatelli, A. Scettri and M. D’Auria, Tetrahedron Lett., 1977, 18,
2199.
12 T.-L. Ho and S. G. Sapp, Synth. Commun., 1983, 13, 207.
13 C. S. Foote, M. T. Wuesthoff, S. Wexler, G. O. Schenck and K.
H. Schulte-Elte, Tetrahedron, 1967, 23, 2583; K. Gollnick and
A. Griesbeck, Tetrahedron, 1985, 41, 2057; B. L. Feringa, Recl. Trav.
Chim. Pays-Bas, 1987, 106, 469.
14 For mechanistic work, see: E. L. Clennan and M. E. Mehrsheikh-Moham-
madi, J. Am. Chem. Soc., 1984, 106, 7112.
15 E. Pavlakos, T. Georgiou, M. Tofi, T. Montagnon and
G. Vassilikogiannakis, Org. Lett., 2009, 11, 4556.
16 M. Tofi, T. Montagnon, T. Georgiou and G. Vassilikogiannakis, Org.
Biomol. Chem., 2007, 5, 772.
17 T. Georgiou, M. Tofi, T. Montagnon and G. Vassilikogiannakis, Org.
Lett., 2006, 8, 1945.
18 G. Vassilikogiannakis and M. Stratakis, Angew. Chem., Int. Ed., 2003, 42,
5465; G. Vassilikogiannakis, I. Margaros, T. Montagnon and
M. Stratakis, Chem.–Eur. J., 2005, 11, 5899.
19 M. Tofi, K. Koltsida and G. Vassilikogiannakis, Org. Lett., 2009, 11, 313.
20 I. Margaros, T. Montagnon and G. Vassilikogiannakis, Org. Lett., 2007,
9, 5585.
21 D. Noutsias, A. Kouridaki and G. Vassilikogiannakis, Org. Lett., 2011,
13, 1166.
In summary, a diverse array of polyoxygenated motifs, found
in many different bioactive natural products, has been syn-
thesized with ease. Each of the new methods employed begins
from simple and readily accessible furan precursors and uses
completely green protocols. The protocols; employ green, non-
toxic reagents and conditions (water, light, air and spirulina); are
highly step-economic (simple precursor → complex motif in one
operation) in a field (namely, the construction of polyoxygenated
molecules) that has traditionally employed many non-construc-
tive steps (protections/deprotections and redox shuttling); and
are highly efficient from the perspective of atom economy.
22 A. Vonshak, Spirulina Platensis (Arthrospira): Physiology, Cell-biology
and Biotechnology, Taylor & Francis, London, 1997.
23 O. Ciferri, Microbiol. Rev., 1983, 47, 551.
General procedure for photooxidations. A solution of fura-
nols 1a–f, 4, 6, 13, or furan-diols 7, 9 and 11, (0.5 mmol) in
water (10 mL), containing spirulina (20 mg) as the photosensiti-
zer, was placed in a test tube and cooled with an ice bath (5 °C).
Oxygen was bubbled through the solution immediately before
and during its irradiation by a xenon Variac Eimac Cermax 300
W visible spectrum lamp. More spirulina (20 mg) was added for
every 15 min of irradiation. Complete consumption of the start-
ing material was observed by TLC after 20–110 mins of
irradiation. In the case of 1a–f, 6 and 9 the reaction mixture was
extracted with EtOAc (3×), the combined organics were dried
(Na2SO4), concentrated in vacuo and purified (when necessary)
by flash column chromatography to afford pure 2a–f, 5 and 10,
respectively. In the case of furans 4, 7, 11 and 13 the EtOAc
extracts were treated with catalytic amounts of p-TsOH (see
ESI†).
24 B. L. Feringa and R. J. Butselaar, Tetrahedron Lett., 1982, 23, 1941.
25 B. L. Feringa and R. J. Butselaar, Tetrahedron Lett., 1983, 24, 1193.
26 T. Yasumoto, M. Murata, Y. Oshima, M. Sano, G. K. Mastumoto and
J. Clardy, Tetrahedron, 1985, 41, 1019; D. A. Evans, H. A. Rajapakse
and D. Stenkamp, Angew. Chem., Int. Ed., 2002, 41, 4569; D. A. Evans,
H. A. Rajapakse, A. Chiu and D. Stenkamp, Angew. Chem., Int. Ed.,
2002, 41, 4573.
27 Y. Miyazaki, M. Shibuya, H. Sugawara, O. Kawaguchi, C. Hirose and
J. Nagatsu, J. Antibiot., 1974, 27, 814.
28 J. L. Occolowitz, D. H. Berg, M. Debono and R. L. Hamill, Biol. Mass
Spectrom., 1976, 3, 272; H. Seto, T. Yahagi, Y. Miyazaki and N. Otake, J.
Antibiot., 1977, 30, 530.
29 D. Uemura, T. Chou, T. Haino, A. Nagatsu, S. Fukuzawa, S.-Z. Zheng
and H.-S. Chen, J. Am. Chem. Soc., 1995, 117, 1155; T. Chou, O. Kamo
and D. Uemura, Tetrahedron Lett., 1996, 37, 4023; T. Chou, T. Haino,
M. Kuramoto and D. Uemura, Tetrahedron Lett., 1996, 37, 4027;
N. Takada, N. Umemura, K. Suenaga, T. Chou, A. Nagatsu, T. Haino,
K. Yamada and D. Uemura, Tetrahedron Lett., 2001, 42, 3491.
30 N. Takada, N. Umemura, K. Suenaga and D. Uemura, Tetrahedron Lett.,
2001, 42, 3495.
The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ERC
grant agreement no. 277588.
31 M. Satake, K. Ofuji, H. Naoki, K. J. James, A. Furey, T. McMahon and
J. Silke, J. Am. Chem. Soc., 1998, 120, 9967; K. C. Nicolaou, T.
V. koftis, S. Vyskocil, G. Petrovic, W. Tang, M. O. Frederick, D. Y.-
K. Chen, Y. Li, T. Ling and Y. M. A. Yamada, J. Am. Chem. Soc., 2006,
128, 2859.
32 N. González, J. Rodríguez and C. Jiménez, J. Org. Chem., 1999, 64,
5705.
33 W. Francke, F. Schröder, P. Philipp, H. Meyer, V. Sinnwell and G. Gries,
Bioorg. Med. Chem., 1996, 4, 363.
Notes and references
1 B. M. Trost, Science, 1991, 254, 1471.
2 P. A. Wender and B. L. Miller, Nature, 2009, 460, 197.
3 I. S. Young and P. S. Baran, Nat. Chem., 2009, 1, 193.
4 T. Gaich and P. S. Baran, J. Org. Chem., 2010, 75, 4657; T. Newhouse,
P. S. Baran and R. W. Hoffmann, Chem. Soc. Rev., 2009, 38, 3010.
34 S. M. Kupchan, E. J. La Voie, A. R. Branfman, B. Y. Fei, W. M. Bright
and R. F. Bryan, J. Am. Chem. Soc., 1977, 99, 3199; A. B. III Smith,
M. Fukui, H. A. Vaccaro and J. R. Empfield, J. Am. Chem. Soc., 1991,
113, 2071.
604 | Green Chem., 2012, 14, 601–604
This journal is © The Royal Society of Chemistry 2012