Journal of the American Chemical Society
Page 8 of 17
17.
Goldsmith, Z. K.; Soudackov, Alexander. V.; Hammes-Schiffer,
Foundation of China (21878286, 21908216), Dalian Institute of
Chemical Physics (DMTO201603, TMSR201601) and Institute for
Basic Science (IBS, Korea) [IBS-R077-A1]. The authors would like to
acknowledge the use of the computing service of SUTD-MIT IDC and
National Super-computing Center (Singapore).
S. Theoretical Analysis of the Inverted Region in Photoinduced Proton-
Coupled Electron Transfer. Faraday Discuss. 2019, 216, 363-378.
18.
B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M.
Concerted Proton-Electron Transfer Reactions in the Marcus Inverted
Region. Science 2019, 364, 471-475.
19.
Involving Electron Transfer. I. J. Chem. Phys. 1956, 24, 966-978.
20. Marcus, R. A. Electron Transfer Reactions in Chemistry: Theory
and Experiment (Nobel Lecture). Angew. Chem. Int. Ed. 1993, 32, 1111-
1121.
21.
Excitation Energy Transfer. Acc. Chem. Res. 2009, 42, 509-518.
22. de Silva, A. P.; Moody, T. S.; Wright, G. D. Fluorescent PET
(Photoinduced Electron Transfer) Sensors as Potent Analytical Tools.
Analyst 2009, 134, 2385-2393.
23.
1
2
3
4
5
6
7
8
Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard,
REFERENCES
Marcus, R. A. On the Theory of Oxidation‐Reduction Reactions
1.
Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced Electron
Transfer Reactions for Macromolecular Syntheses. Chem. Rev. 2016, 116
10212-10275.
,
9
2.
Griesbeck, A. G.; Hoffmann, N.; Warzecha, K.-D. Photoinduced-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Electron-Transfer Chemistry:ꢀ From Studies on PET Processes to
Applications in Natural Product Synthesis. Acc. Chem. Res. 2007, 40, 128-
140.
Hsu, C.-P. The Electronic Couplings in Electron Transfer and
3.
Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.;
Nagano, T. Development of a Highly Sensitive Fluorescence Probe for
Hydrogen Peroxide. J. Am. Chem. Soc. 2011, 133, 10629-10637.
Zang, L.; Liu, R.; Holman, M. W.; Nguyen, K. T.; Adams, D. M.
4.
Fujikawa, Y.; Urano, Y.; Komatsu, T.; Hanaoka, K.; Kojima, H.;
A Single-Molecule Probe Based on Intramolecular Electron Transfer. J. Am.
Chem. Soc. 2002, 124, 10640-10641.
24.
Fukuzumi, S. Rational Design Principle for Modulating Fluorescence
Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer.
J. Am. Chem. Soc. 2003, 125, 8666-8671.
Terai, T.; Inoue, H.; Nagano, T. Design and Synthesis of Highly Sensitive
Fluorogenic Substrates for Glutathione S-Transferase and Application for
Activity Imaging in Living Cells. J. Am. Chem. Soc. 2008, 130, 14533-14543.
Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.;
5.
Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano,
T. Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence
Probes. J. Am. Chem. Soc. 2005, 127, 4888-4894.
25.
Zhou, P.; Liu, J.; Yang, S.; Chen, J.; Han, K.; He, G. The Invalidity
6.
Kawatani, M.; Yamamoto, K.; Yamada, D.; Kamiya, M.;
of the Photo-Induced Electron Transfer Mechanism for Fluorescein
Derivatives. Phys. Chem. Chem. Phys. 2012, 14, 15191-15198.
26.
B. A Simple BODIPY-Aniline-Based Fluorescent Chemosensor as Multiple
Logic Operations for the Detection of pH and CO2 Gas. Dalton Trans. 2014,
43, 8499-8507.
Miyakawa, J.; Miyama, Y.; Kojima, R.; Morikawa, T.; Kume, H.; Urano, Y.
Fluorescence Detection of Prostate Cancer by an Activatable Fluorescence
Pan, Z.-H.; Luo, G.-G.; Zhou, J.-W.; Xia, J.-X.; Fang, K.; Wu, R.-
Probe for PSMA Carboxypeptidase Activity. J. Am. Chem. Soc. 2019, 141
10409-10416.
,
7.
Ungati, H.; Govindaraj, V.; Narayanan, M.; Mugesh, G. Probing
the Formation of a Seleninic Acid in Living Cells by the Fluorescence
Switching of a Glutathione Peroxidase Mimetic. Angew. Chem. Int. Ed.
2019, 58, 8156-8160.
27.
Wang, C.; Qiao, Q.; Chi, W.; Chen, J.; Liu, W.; Tan, D.;
McKechnie, S.; Lyu, D.; Jiang, X.-F.; Zhou, W.; Xu, N.; Zhang, Q.; Xu, Z.;
Liu, X. Quantitative Design of Bright Fluorophores and AIEgens via the
Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT).
8.
Goldberg, J. M.; Batjargal, S.; Chen, B. S.; Petersson, E. J.
Thioamide Quenching of Fluorescent Probes through Photoinduced
Electron Transfer: Mechanistic Studies and Applications. J. Am. Chem. Soc.
2013, 135, 18651-18658.
Angew. Chem. Int. Ed. 2020
28. Filatov, M. A.; Karuthedath, S.; Polestshuk, P. M.; Savoie, H.;
, DOI: 10.1002/anie.201916357.
Flanagan, K. J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.; Boyle, R. W.;
Senge, M. O. Generation of Triplet Excited States via Photoinduced
Electron Transfer in Meso-Anthra-BODIPY: Fluorogenic Response toward
Singlet Oxygen in Solution and in Vitro. J. Am. Chem. Soc. 2017, 139, 6282-
6285.
9.
Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. Highly
Sensitive Fluorescence Probes for Nitric Oxide Based on Boron
Dipyrromethene Chromophore Rational Design of Potentially Useful
Bioimaging Fluorescence Probe. J. Am. Chem. Soc. 2004, 126, 3357-3367.
10.
Filatov, M. A. Heavy-Atom-Free BODIPY Photosensitizers with
29.
Turro, N. J.; Blanchard, S. C. On the Mechanisms of Cyanine Fluorophore
Photostabilization. J. Phys. Chem. Lett. 2012, , 2200-2203.
30. Altman, R. B.; Terry, D. S.; Zhou, Z.; Zheng, Q.; Geggier, P.;
Zheng, Q.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Warren, J. D.;
Intersystem Crossing Mediated by Intramolecular Photoinduced Electron
Transfer. Org. Biomol. Chem. 2020, 18, 10-27.
3
11.
Peng, Q.; Shi, Q.; Niu, Y.; Yi, Y.; Sun, S.; Li, W.; Shuai, Z.
Understanding the Efficiency Drooping of the Deep Blue Organometallic
Phosphors: a Computational Study of Radiative and Non-radiative Decay
Kolster, R. A.; Zhao, Y.; Javitch, J. A.; Warren, J. D.; Blanchard, S. C. Cyanine
Fluorophore Derivatives with Enhanced Photostability. Nat. Methods 2012,
Rates for Triplets. J. Mater. Chem. C 2016,
4, 6829-6838.
9
, 68-71.
31.
12. Niu, Y.; Li, W.; Peng, Q.; Geng, H.; Yi, Y.; Wang, L.; Nan, G.;
Swedin, R. K.; Zatsikha, Y. V.; Healy, A. T.; Didukh, N. O.;
Wang, D.; Shuai, Z. MOlecular MAterials Property Prediction Package
(MOMAP) 1.0: a Software Package for Predicting the Luminescent
Properties and Mobility of Organic Functional Materials. Mol. Phys. 2018,
116, 1078-1090.
Blesener, T. S.; Fathi-Rasekh, M.; Wang, T.; King, A. J.; Nemykin, V. N.;
Blank, D. A. Rapid Excited-State Deactivation of BODIPY Derivatives by a
Boron-Bound Catechol. J. Phys. Chem. Lett. 2019, 10, 1828-1832.
32.
Chi, W.; Qiao, Q.; Lee, R.; Liu, W.; Teo, Y. S.; Gu, D.; Lang, M.
13.
Daly, B.; Ling, J.; de Silva, A. P. Current Developments in
J.; Chang, Y.-T.; Xu, Z.; Liu, X. A Photoexcitation-Induced Twisted
Intramolecular Charge Shuttle. Angew. Chem. Int. Ed. 2019, 58, 7073-7077.
Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches.
Chem. Soc. Rev. 2015, 44, 4203-4211.
33.
Buck, J. T.; Boudreau, A. M.; DeCarmine, A.; Wilson, R. W.;
14.
de Silva, A. P. Luminescent Photoinduced Electron Transfer
Hampsey, J.; Mani, T. Spin-Allowed Transitions Control the Formation of
Triplet Excited States in Orthogonal Donor-Acceptor Dyads. Chem 2019,
(PET) Molecules for Sensing and Logic Operations. J. Phys. Chem. Lett.
2011,
15.
2
, 2865-2871.
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y.
5
, 138-155.
34.
Benniston, A. C.; Clift, S.; Hagon, J.; Lemmetyinen, H.;
New Strategies for Fluorescent Probe Design in Medical Diagnostic
Imaging. Chem. Rev. 2010, 110, 2620-2640.
Tkachenko, N. V.; Clegg, W.; Harrington, R. W. Effect on Charge Transfer
and Charge Recombination by Insertion of a Naphthalene-Based Bridge in
Molecular Dyads Based on Borondipyrromethene (BODIPY).
ChemPhysChem 2012, 13, 3672-3681.
16.
Weller, A. Electron-Transfer and Complex Formation in the
Excited State. Pure Appl. Chem. 1968, 16, 115.
ACS Paragon Plus Environment