Journal of the American Chemical Society
Page 12 of 13
IV
in Hydrogen Atom Transfer by High-Valent Metal-Oxo
Porphyrinoid Compounds.” J. Am. Chem. Soc. 2018, 140 (12),
Detection of a High Spin Fe -Oxo Species Derived from Either
III
III
an Fe -Oxo or Fe -OH Complex.” J. Am. Chem. Soc. 2010, 132
(35), 12188–12190.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
4380–4390.
(
(
17)
18)
Lansky, D. E.; Goldberg, D. P. “Hydrogen Atom Abstraction by
a High-Valent Manganese(V)−Oxo Corrolazine.” Inorg. Chem.
2006, 45, 5119–5125.
McDonald, A. R.; Que, L. “High-Valent Nonheme Iron-Oxo
Complexes: Synthesis, Structure, and Spectroscopy.” Coord.
Chem. Rev. 2013, 257 (2), 414–428.
Sastri, C. V; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.; Ray,
K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L.; Shaik, S.;
Nam, W. “Axial Ligand Tuning of a Nonheme Iron(IV) Oxo Unit
for Hydrogen Atom Abstraction.” Proc. Natl. Acad. Sci. 2007,
(36)
(37)
(38)
Bryant, J. R.; Mayer, J. M. “Oxidation of C−H Bonds by
IV
2+
[(Bpy) (Py)Ru O] Occurs by Hydrogen Atom Abstraction.”
2
J. Am. Chem. Soc. 2003, 125 (34), 10351–10361.
Lebeau, E. L.; Binstead, R. A.; Meyer, T. J. “Mechanistic
Implications of Proton Transfer Coupled to Electron
Transfer.” J. Am. Chem. Soc. 2001, 123 (43), 10535–10544.
Jeong, Y. J.; Kang, Y.; Han, A.-R.; Lee, Y.-M.; Kotani, H.;
Fukuzumi, S.; Nam, W. “Hydrogen Atom Abstraction and
Hydride Transfer Reactions by Iron(IV)-Oxo Porphyrins.”
Angew. Chem., Int. Ed. 2008, 47 (38), 7321–7324.
(19)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
04 (49), 19181–19186.
(39)
(40)
Caldin, E. F. “Tunneling in Proton-Transfer Reactions in
Solution.” Chem. Rev. 1969, 69 (1), 135–156.
(20)
Dhar, D.; Tolman, W. B. “Hydrogen Atom Abstraction from
Hydrocarbons by a Copper(III)-Hydroxide Complex.” J. Am.
Chem. Soc. 2015, 137 (3), 1322–1329.
Cong, Z.; Kinemuchi, H.; Kurahashi, T.; Fujii, H. “Factors
Affecting Hydrogen-Tunneling Contribution in Hydroxylation
Reactions Promoted by Oxoiron(IV) Porphyrin π-Cation
Radical Complexes.” Inorg. Chem. 2014, 53 (19), 10632–
10641.
Mandal, D.; Mallick, D.; Shaik, S. “Kinetic Isotope Effect
Determination Probes the Spin of the Transition State, Its
Stereochemistry, and Its Ligand Sphere in Hydrogen
Abstraction Reactions of Oxoiron(IV) Complexes.” Acc. Chem.
Res. 2018, 51 (1), 107–117.
Edwards, S. J.; Soudackov, A. V; Hammes-Schiffer, S. “Analysis
of Kinetic Isotope Effects for Proton-Coupled Electron
Transfer Reactions.” J. Phys. Chem. A 2009, 113 (10), 2117–
2126.
Bordwell, F. G. “Equilibrium Acidities in Dimethyl Sulfoxide
Solution.” Acc. Chem. Res 1988, 21 (7), 456–463.
Luo, Y.-R. “Handbook of Bond Dissociation Energies in
Organic Compounds;” CRC Press: Boca Raton, 2003.
Hansch, C.; Leo, A.; Taft, R. W. “A Survey of Hammett
Substituent Constants and Resonance and Field Parameters.”
Chem. Rev. 1991, 91 (2), 165–195.
Nicholson, R. S. “Theory and Application of Cyclic
Voltammetry for Measurement of Electrode Reaction
Kinetics.” Anal. Chem. 1965, 37 (11), 1351–1355.
(
21)
Usharani, D.; Lacy, D. C.; Borovik, A. S.; Shaik, S. “Dichotomous
Hydrogen Atom Transfer vs Proton-Coupled Electron
Transfer During Activation of X–H Bonds (X = C, N, O) by
Nonheme Iron–Oxo Complexes of Variable Basicity.” J. Am.
Chem. Soc. 2013, 135 (45), 17090–17104.
Bím, D.; Maldonado-Domínguez, M.; Rulíšek, L.; Srnec, M.
“Beyond the Classical Thermodynamic Contributions to
Hydrogen Atom Abstraction Reactivity.” Proc. Natl. Acad. Sci.
(41)
(42)
(
(
22)
23)
2
018, 115 (44), E10287–E10294.
Hodgkiss, J. M.; Rosenthal, J.; Nocera, D. G. The Relation
between Hydrogen Atom Transfer and Proton-Coupled
Electron Transfer in Model Systems. In Hydrogen-Transfer
Reactions; Hynes, J. T., Klinman, J. P., Limbach, H.-H., Schowen,
R. L., Eds.; WILEY-VCH Verlag GmbH: Weinheim, 2007; pp
(43)
(44)
(45)
5
03–562.
(24)
Hammes-Schiffer, S. “Theory of Proton-Coupled Electron
Transfer in Energy Conversion Processes.” Acc. Chem. Res.
2
009, 42 (12), 1881–1889.
(
(
(
(
25)
26)
27)
28)
Fulton, J. R.; Sklenak, S.; Bouwkamp, M. W.; Bergman, R. G. “A
Comprehensive Investigation of the Chemistry and Basicity of
a Parent Amidoruthenium Complex.” J. Am. Chem. Soc. 2002,
(46)
(47)
1
24 (17), 4722–4737.
Roth, J. P.; Mayer, J. M. “Hydrogen Transfer Reactivity of a
Ferric Bi-Imidazoline Complex That Models the Activity of
Lipoxygenase Enzymes.” Inorg. Chem. 1999, 38 (12), 2760–
2761.
Klingler, R. J.; Kochi, J. K. “Electron-Transfer Kinetics from
Cyclic
Voltammetry.
Quantitative
Description
of
Electrochemical Reversibility.” J. Phys. Chem. 1981, 85 (12),
1731–1741.
Bryant, R. G. “The NMR Time Scale.” J. Chem. Educ. 1983, 60
(11), 933–935.
Parsell, T. H.; Yang, M. Y.; Borovik, A. S. “C-H Bond Cleavage
with Reductants: Re-Investigating the Reactivity of
(48)
(49)
III/IV
Monomeric Mn -Oxo Complexes and the Role of Oxo
Klinker, E. J.; Shaik, S.; Hirao, H.; Que, L. “A Two-State
Reactivity Model Explains Unusual Kinetic Isotope Effect
Patterns in C-H Bond Cleavage by Nonheme Oxoiron(IV)
Complexes.” Angew. Chem., Int. Ed. 2009, 48 (7), 1291–1295.
Mandal, D.; Mallick, D.; Shaik, S. “Kinetic Isotope Effect
Determination Probes the Spin of the Transition State, Its
Stereochemistry, and Its Ligand Sphere in Hydrogen
Abstraction Reactions of Oxoiron(IV) Complexes.” Acc. Chem.
Res. 2018, 51 (1), 107–117.
Hickey, A. K.; Lutz, S. A.; Chen, C.-H.; Smith, J. M. “Two-State
Reactivity in C–H Activation by a Four-Coordinate Iron(0)
Complex.” Chem. Commun. 2017, 53 (7), 1245–1248.
Knizia, G. “Intrinsic Atomic Orbitals: An Unbiased Bridge
between Quantum Theory and Chemical Concepts.” J. Chem.
Theory Comput. 2013, 9 (11), 4834–4843.
Knizia, G.; Klein, J. E. M. N. “Electron Flow in Reaction
Mechanisms-Revealed from First Principles.” Angew. Chem.,
Int. Ed. 2015, 54 (18), 5518–5522.
Klein, J. E. M. N.; Knizia, G. “CPCET versus HAT: A Direct
Theoretical Method for Distinguishing X-H Bond-Activation
Mechanisms.” Angew. Chem., Int. Ed. 2018, 57 (37), 11913–
11917.
Ligand Basicity.” J. Am. Chem. Soc. 2009, 131 (8), 2762–2763.
Zdilla, M. J.; Dexheimer, J. L.; Abu-Omar, M. M. “Hydrogen
Atom Transfer Reactions of Imido Manganese(V) Corrole:
One Reaction with Two Mechanistic Pathways.” J. Am. Chem.
Soc. 2007, 129 (37), 11505–11511.
Yosca, T. H.; Rittle, J.; Krest, C. M.; Onderko, E. L.; Silakov, A.;
Calixto, J. C.; Behan, R. K.; Green, M. T. “Iron(IV)Hydroxide
PK(a) and the Role of Thiolate Ligation in C-H Bond Activation
by Cytochrome P450.” Science. 2013, 342 (6160), 825–829.
Green, M. T.; Dawson, J. H.; Gray, H. B. “Oxoiron(IV) in
Chloroperoxidase Compound II Is Basic: Implications for
P450 Chemistry.” Science. 2004, 304 (5677), 1653–1656.
Donoghue, P. J.; Tehranchi, J.; Cramer, C. J.; Sarangi, R.;
Solomon, E. I.; Tolman, W. B. “Rapid C–H Bond Activation by a
Monocopper(III)–Hydroxide Complex.” J. Am. Chem. Soc.
(50)
(29)
(30)
(51)
(52)
(53)
(54)
(
(
31)
32)
2
011, 133 (44), 17602–17605.
Dhar, D.; Yee, G. M.; Markle, T. F.; Mayer, J. M.; Tolman, W. B.
Reactivity of the Copper(III)-Hydroxide Unit with Phenols.”
“
Chem. Sci. 2017, 8 (2), 1075–1085.
Goetz, M. K.; Hill, E. A.; Filatov, A. S.; Anderson, J. S. “Isolation
of a Terminal Co(III)-Oxo Complex.” J. Am. Chem. Soc. 2018,
(33)
1
40 (41), 13176–13180.
(55)
(56)
Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P. “C-H Bond
Activation by a Ferric Methoxide Complex: Modeling the Rate-
Determining Step in the Mechanism of Lipoxygenase.” J. Am.
Chem. Soc. 2002, 124 (1), 83–96.
Ji, X.; Huang, T.; Wu, W.; Liang, F.; Cao, S. “LDA-Mediated
Synthesis of Triarylmethanes by Arylation of Diarylmethanes
with Fluoroarenes at Room Temperature.” Org. Lett. 2015, 17
(20), 5096–5099.
(
(
34)
35)
Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.;
Leito, I.; Koppel, I. A. “Extension of the Self-Consistent
Spectrophotometric Basicity Scale in Acetonitrile to a Full
Span of 28 pK
a
Units: Unification of Different Basicity Scales.”
J. Org. Chem. 2005, 70 (3), 1019–1028.
Lacy, D. C.; Gupta, R.; Stone, K. L.; Greaves, J.; Ziller, J. W.;
Hendrich, M. P.; Borovik, A. S. “Formation, Structure, and EPR
ACS Paragon Plus Environment