10.1002/chem.201904528
Chemistry - A European Journal
COMMUNICATION
2445–2448; d) H. Schreyer, R. Eckert, S. Immohr, J. de Bellis, M.
Felderhoff, F. Schüth, Angew. Chem. 2019, 131, 11384–11387; Angew.
Chem. Int. Ed. 2019, 58, 11262–11265.
time monitoring of the mechanochemical reaction using in situ
pressure sensing during ball milling. This result suggests that CO
is rapidly transferred from Mo(CO)6 to the active catalytic system
without significant release of molecular carbon monoxide.
However, if preferred, gaseous CO can be applied in the
mechanochemical alkoxycarbonylation reaction as well. From a
more general perspective, this study reinforces the concept of in
situ generation and consumption of gaseous reactants by
mechanochemistry, which reduces the direct handling and
exposition to toxic or highly reactive gaseous substances.[3]
[7]
[8]
[9]
a) I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood,
S.-M. Jung, J.-M. Seo, M.-J. Kim, D. Wook Chang, L. Dai, J.-B. Baek,
Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 5588−5593.
C. Bolm, R. Mocci, C. Schumacher, M. Turberg, F. Puccetti, J. G.
Hernández, Angew. Chem. 2018, 130, 2447–2450; Angew. Chem. Int.
Ed. 2018, 57, 2423–2426.
H. Schreyer, S. Immohr, F. Schüth, J. Mater Sci. 2017, 52, 12021–12030.
[10] M. Bilke, P. Losch, O. Vozniuk, A. Bodach, F. Schüth, J. Am. Chem. Soc.
2019, 141, 11212–11218.
[11] a) A. Y. Li, A. Segalla, C.-J. Li, A. Moores, ACS Sustainable Chem. Eng.
2017, 5, 11752–1176; b) I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M.
J. Kim, L. Dai, J. B. Baek, J. Am. Chem. Soc. 2013, 135, 1386–1393; c)
I. -Y. Jeon, H. -J. Choi, M. Choi, J. -M. Seo, S. -M. Jung, M. -J. Kim, S.
Zhang, L. Zhang, Z. Xia, L. Dai, N. Park, J.-B. Baek, Sci. Rep. 2013, 3,
1810; d) I.-Y. Jeon, M. J. Ju, J. Xu, H.-J. Choi, J.-M. Seo, M.-J. Kim, I. T.
Choi, H. M. Kim, J. C. Kim, J.-J. Lee, H. K. Liu, H. K. Kim, S. Dou, L. Dai,
J.-B. Baek, Adv. Funct. Mater. 2015, 25, 1170–1179; e) J. C. Kim, J.-J.
Lee, D. Shin, S.-M. Jung, J.-M. Seo, M.-J. Kim, N. Park, L. Dai, J.-B.
Baek, Sci. Rep. 2013, 3, 2260.
Acknowledgements
The authors are grateful to RWTH Aachen University for financial
support through the Distinguished Professorship Program funded
by the Excellence Initiative of the German Federal and State
Governments.
[12] K. Cousin, S. Menuel, E. Monflier, F. Hapiot, Angew. Chem. 2017, 129,
10700–10704; Angew. Chem. Int. Ed. 2017, 56, 10564–10568.
[13] a) C. J. Mallia, I. R. Baxendale, Org. Process Res. Dev. 2016, 20, 327–
360; b) P. Gautam, B. M. Bhanage, Catal. Sci. Technol. 2015, 5, 4663–
4702; c) S. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016,
49, 594−605.
Keywords: ball milling • carbonylation • mechanochemistry •
molybdenum hexacarbonyl • real-time monitoring
[1]
[2]
a) C. Suryanarayana, Prog. Mater. Sci. 2001, 46, 1–184; b) C. F.
Burmeister, A. Kwade, Chem. Soc. Rev. 2013, 42, 7660–7667; c) P.
Baláž, M. Achimovičová, M. Baláž. P. Billik, Z. Cherkezova-Zheleva, J.
M. Criado, F. Delogu, E. Dutková, F. Gaffet, F. J. Gotor, R. Kumar, I.
Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem.
Soc. Rev. 2013, 42, 7571–7637.
[14] a) L. R. Odell, F. Russo, M. Larhed, Synlett 2012, 23, 685–698; b) L.
Åkerbladh, L. R. Odell, M. Larhed, Synlett 2019, 30, 141–155.
[15] For
a
recent Minireview on palladium-catalyzed carbonylative
multicomponent reactions, see: C. Shen, X.-F. Wu, Chem. Eur. J. 2017,
23, 2973.
For reviews in the area, see: a) S. L. James, C. J. Adams, C. Bolm, D.
Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W.
Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C.
Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41,
413−447; b) T. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. DOI:
[16] For optimization of the reaction conditions, see ESI.
[17] During the in situ monitoring of the milling experiments it was observed
that the temperature rose from ca. 25 °C to ca. 41 °C after 4 h at 800 rpm
(for details see ESI). For recent studies on temperature development and
temperature control during ball milling, see: a) K. Užarević, N. Ferdelji, T.
Mrla, P. A. Julien, B. Halasz, T. Friščić, I. Halasz, Chem. Sci. 2018, 9,
2525–2532; ꢀb) N. Cindro, M. Tireli, B. Karadeniz, T. Mrla, K. Užarevic,
ACS Sustainable Chem. Eng. 2019, 7, 16301–16309; c) H. ꢀKulla, M.
Wilke, F. Fischer, M. Rölling, C. Maierhofer, F. Emmerling, Chem.
Commun. 2017, 53, 1664–1667; c) J. Andersen, J. Mack, Angew. Chem.
2018, 130, 13246–13249; Angew. Chem. Int. Ed. 2018, 57, 13062–
13065; d) K. Užarević, V. Štrukil, C. Mottillo, P. A. Julien, A. Puškarić, T.
Friščić, I. Halasz, Cryst. Growth Des. 2016, 16, 2342–2347.
10.1002/ange.201906755;
Angew.
Chem.
Int.
Ed.
DOI:
10.1002/anie.201906755; A. Beillard, X. Bantreil, T.-X. Métro, J.
Martinez, F. Lamaty, Chem. Rev. 2019, 119, 7529−7609; c) E. Colacino,
A. Porcheddu, C. Charnay, F. Delogu, React. Chem. Eng. 2019, 4,
1179−1188; d) D. Tan, F. García, Chem. Soc. Rev. 2019, 48, 2274–
2292; e) C. G. Avila-Ortiz, M. Pérez-Venegas, J. Vargas-Caporali, E.
Juaristi, Tetrahedron Lett. 2019, 60, 1749–1757; f) J. L. Howard, Q. Cao,
D. L. Browne, Chem. Sci. 2018, 9, 3080–3094; g) C. Bolm, J. G.
Hernández, ChemSusChem, 2018, 11, 1410–1420; h) J. Andersen, J.
Mack, Green Chem. 2018, 20, 1435–1443; i) J. G. Hernández, Chem.
Eur. J. 2017, 23, 17157–17165; j) J. G. Hernández, C. Bolm, J. Org.
Chem. 2017, 82, 4007−4019; k) J.-L. Do, T. Friščić, ACS Cent. Sci. 2017,
3, 13−19; l) N. R. Rightmire, T. P. Hanusa, Dalton Trans. 2016, 45, 2352–
2362; m) E. Boldyreva, Chem. Soc. Rev. 2013, 42, 7719–7738.
C. Bolm, J. G. Hernández, Angew. Chem. 2019, 131, 3320–3335; Angew.
Chem. Int. Ed. 2019, 58, 3285–3299.
[18] The amount of CO released upon milling was calculated using the ideal
gas law (for details, see ESI). For comparison, a theoretical release of
six molecules of CO from of Mo(CO)6 (0.5 mmol) was calculated to
produce an internal pressure inside the milling jar of 5.29 bar at 25 °C.
[19] I. Brekalo, W. Yuan, C. Mottillo, Y. Lu, Y. Zhang, J. Casaban, K. Travis
Holman, S. L. James, F. Duarte, P. Andrew Williams, K. D. M. Harris, T.
[3]
[4]
Friščić,
ChemRxiv.
Preprint.
a) D. J. Nash, D. T. Restrepo, N. S. Parra, K. E. Giesler, R. A. Penabade,
M. Aminpour, D. Le, Z. Li, O. K. Farha, J. K. Harper, T. S. Rahman, R.
G. Blair, ACS Omega 2016, 1, 1343–1354; b) C. Schumacher, D. E.
Crawford, B, Raguž, R. Glaum, S. L. James, C. Bolm, J. G. Hernández
Chem. Commun. 2018, 54, 8355–8358; c) Y. Sawama, T. Kawajiri, M.
Niikawa, R. Goto, Y. Yabe, T. ꢀTakahashi, T. Marumoto, M. Itoh, Y.
Kimura, Y. Monguchi, S.-I. Kondo, H. Sajiki, ChemSusChem 2015, 8,
3773–3776. ꢀ
[20] a) N. Sun, Q. Sun, W. Zhao, L. Jin, B. Hu, Z. Shen, X. Hu, Adv. Synth.
Catal. 2019, 361, 2117–2123. b) J. T. Joseph, A. M. Sajith, R. C.
Ningegowda, S. Shashikanth, Adv. Synth. Catal. 2017, 359, 419–425.
[21] J. Spencer, N. Anjum, H. Patel, R. P. Rathnam, J. Verma, Synlett 2007,
2557–2558.
[22] Aryl bromides are known to undergo aminocarbonylation reactions in
toluene at 80-120 °C for 5-22 h using Pd(OAc)2, Xantphos CO (1 atm)
and Na2CO3, see: J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T.
E. Barder, S. L. Buchwald, J. Org. Chem. 2008, 73, 7102–7107. The
lower reactivity of aryl bromides observed in this work could be a
consequence of the substantially different reaction conditions by milling
i.e., 90 min without external heating. For in situ temperature monitoring
of the reaction, see Figure S7.
[5]
[6]
a) A. Beillard, T.-X. Métro, X. Bantreil, J. Martinez, F. Lamaty, Chem. Sci.
2017, 8, 1086–1089; b) K. J. Ardila-Fierro, A. Pich, M. Spehr, J. G.
Hernández, C. Bolm, Beilstein J. Org. Chem. 2019, 15, 811–817.
a) G. Mulas, R. Campesi, S. Garroni, F. Delogu, C. Milanese, Appl. Surf.
Sci. 2011, 257, 8165–8170; b) S. Immohr, M. Felderhoff, C. Weidenthaler,
F. Schüth, Angew. Chem. 2013, 125, 12920–12923; Angew. Chem. Int.
Ed. 2013, 52, 12688–12691; c) R. Eckert, M. Felderhoff, F. Schüth,
Angew. Chem. 2017, 129, 2485–2488; Angew. Chem. Int. Ed. 2017, 56,
This article is protected by copyright. All rights reserved.