4
Tetrahedron
compound 15 were detected on the resin in a gel-phase 13C
Fodor, S. P. A.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233-
1251. (f) Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S.
P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385-1401. (g)
Seneci, P. Solid-Phase Synthesis and Combinatorial Technologies,
Wiley, J. and Sons, New York, 2000.
N
O
N
3. (a) For synthetic applications of nitrile oxides see: Jager, V.;
Colinas, P. A. Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Product, Padwa, A.
and Pearson, W. H. Ed.; Wiley, J. and Sons, Eds., Hoboken (NJ):
2003, pp. 361-472. (b) Booth, S.; Hermkens, P. H. H.; Ottenheijm,
H. C. J.; Rees, D. C. Tetrahedron 1998, 54, 15385-15443 and
references therein. (c) Zaragoza Dörwald, F. Organic Synthesis on
Solid Phase, Wiley-VCH, Weinheim, 2000, pp. 369-372. (d)
Lorsbach, B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549-1581. (e)
Samuelson, R. E.; Kurth, M. J. Chem. Rev. 2001, 101, 137-202. (f)
Liu, X.-F.; cui, S.-L.; wang, Y.-G. Chem. Lett. 2003, 32, 842-843.
(g) Quan, C.; Kurth, M. J. Org. Chem. 2004, 69, 1470-1474.
4. (a) Pei, Y.; Moos, W. M. Tetrahedron Lett. 1994, 35, 5825-5828.
(b) Lorsbach, B. A.; Miller, R. B.; Kurth, M. J. J. Org. Chem.
1996, 61, 8716-8717. (c) Kurth, M. J.; Randall, L. A. A.;
Takenuchi, K. J. Org. Chem. 1996, 61, 8755-8761. (d)
Kantorowski, E. J.; Kurth, M. J. J. Org. Chem. 1997, 62, 6797-
6803.
Ene
reaction
O
O
W'
+
N
O
O
W'
O
N
14
3
15
OH
O
Transesterification
N
O
MeO
N
OH
16
O
NMR spectrum.
Scheme 5. SP supported nitrosocarbonyl functionalization
strategy to nucleoside analogues.
5. (a) Beebe, X.; Schore, N. E.; Kurth, M. J. J. Am. Chem. Soc. 1992,
114, 10061-10062. (b) Beebe, X.; Schore, N. E.; Kurth, M. J. J.
Org. Chem. 1995, 60, 4196-4203. (c) Cereda, E.; Ezhaya, A.;
Quai, M.; Barbaglia, W. Tetrahedron Lett. 2001, 42, 4951-4953.
(d) Cheng, J. F.; Mjalli, A. M. M. Tetrahedron Lett. 1998, 39,
939-942. (e) Alonso, C.; Nantz, M. H.; Kurth, M. J.
In case of success, the latter compound would have been
cleaved from the solid support by transesterification to furnish
the final product 16.17 Unfortunately the reactivity of
cyclopentene in SP ene reaction is completely unsatisfactory and
these preliminar but fundamental tests shed a strong light on the
limitations of the applied model of synthesis of an hypothetical
library of nucleoside analogues.
TetrahedronLett. 2000, 41, 5617-5622. (f) Shankar, B. B.; Yang,
D. Y.; Girton, S.; Ganguly, A. K. Tetrahedron Lett. 1988, 39,
2447-2448. (g) Zou, N.; Jiang, B. J. Comb. Chem. 2000, 2, 6-7.
6. Faita, G.; Mella, M.; Mortoni, A.; Paio, A.; Quadrelli, P.; Seneci,
P. Eur. J. Org. Chem. 2002, 1175-1183.
In conclusion, even though the method cannot be proposed to
prepare extended libraries of N-alkenyl hydroxamic acids on SP
or to be used in the derivatization of olefins for other synthetic
purposes, it discloses the limitations due to the high instability of
nitrosocarbonyl intermediates. The SP environment is unable to
prolong the life-time of nitrosocarbonyls in spite of the site-site
isolation which in theory could prevent their dimerization but not
decomposition by other reagents, especially when used in large
excess. Reasonably nitrosocarbonyls undergo a rapid cleavage to
the benzoyl radicals and nitric oxide,13,15 analogous to the
photochemical cleavage of α-hydroxy ketones18 or in Norrish
Type I processes.19 The mild conditions under which the
reactions were performed could made the protocol suitable for
the C-N bond formation on SP. However, only a limited range of
highly substituted olefins can be employed and in high
concentrations. These are the strong limitations of the protocol.
The synthetic elaboration towards amides20 through the easy
deoxygenation of the N-alkenyl hydroxamic acids seems to be
the only synthetic application of the protocol and needs further
investigations and developments to make the methodology
applicable, at least in some cases.
7. Quadrelli, P.; Mella, M.; Gamba Invernizzi, A.; Caramella, P.
Tetrahedron 1999, 55, 10497-10510.
8. For synthetic applications on nitroso compounds see: Memeo, M.
G.; Quadrelli, P. Chem. Rev. 2017, 117, 2108-2200.
9. Cohen, A. D.; Zeng, B.-B.; King, S. B.; Toscano, J. P. J. Am.
Chem. Soc. 2003, 125, 1444-1445.
10. Quadrelli, P.; Mella, M.; Caramella, P. Tetrahedron Lett. 1998,
39, 3233-3236.
11. Look, G. C.; Holmes, C. P.; Chinn, P.; Gallop, M. A. J. Org.
Chem. 1994, 59, 758-761.
12. Quadrelli, P.; Mella, M.; Caramella, P. Tetrahedron Lett. 1999,
40, 797-800 and unpublished results.
13. Memeo, M. G.; Dondi, D.; Mannucci, B.; Corana, F.; Quadrelli, P.
Tetrahedron 2013, 69, 7387-7394.
14. (a) Guthrie, D. A.; Kim, N. Y.; Siegler, M. A.; Moore, C. D.;
Toscano, J. P. J. Am. Chem. Soc. 2012, 134, 1962-1965. (b)
Adachi, Y.; Nakagawa, H.; Matsuo, K.; Suzuki, T. S.; Miyata, N.
Chem. Commun. 2008, 5149-5151.
15. (a) Krchnak, V.; Zajfcek, J.; Miller, P. A.; Miller, M. J. J. Org.
Chem. 2011, 76, 10249-10253. (b) Krchnak, V.; Waring, K. R.;
Noll, B. C.; Moellmann, U.; Dahse, H.-M.; Miller, M. J. J. Org.
Chem. 2008, 73, 4559-4567.
16. Krchnak, V.; Moellmann, U.; Dahse, H.-M.; Miller, M. J. J.
Comb. Chem. 2008, 10, 104-111.
17. Scagnelli, L.; Memeo, M. G.; Carosso, S.; Bovio, B.; Quadrelli, P.
Eur. J. Org. Chem. 2013, 3835-3846.
Acknowledgments
Financial support by University of Pavia and MIUR (PRIN
2011, CUP: F11J12000210001). Thanks are due to the University
of Pavia - C.I.C.O.P.S. for a research grant for B.P.J.
18. (a) Colley, C. S.; Grills, D. C.; Beslay, N. A.; Jockusch, S.;
Matousek, P.; Parker, A. W.; Towrie, M.; Turro, N. J.; Gill, P. M.
W.; George, M. W. J. Am. Chem. Soc. 2002, 124, 14952-14958.
(b) Ward, H. R. Free Radicals Kochi, J. K., Ed.; Wiley, J. and
Sons, New York, 1973; pp. 264-265.
References and notes
19. Bohne, C. CRC Handbook of Organic Photochemistry and
Photobiology Horspool, W. M., Ed.; CRC Press, Boca Raton,
1995; pp. 416-422.
20. (a) Keck, G. E.; Webb, R. R.; Yates, J. B. Tetrahedron 1981, 37,
4007-4016. (b) Corrie, J. E. T.; Kirby, G. W.; Mackinnon, J. W.
M. J. Chem. Soc. Perkin Trans. 1 1985, 883-886. (c) Kirby, G.
W.; McGuigan, H.; McLean, D. J. Chem. Soc. Perkin Trans. 1
1985, 1961-1966. (d) Christie, C. C.; Kirby, G. W.; McGuigan,
H.; Mackinnon, J. W. M. J. Chem. Soc. Perkin Trans. 1 1985,
2469-2473.
1. (a) Früchtel, J. S.; Jung, G. Angew. Chem. Int. Ed. Engl. 1996, 35,
17–42. (b) Shuttleworth, S. J.; Allin, M.; Sharma, P. K. Synthesis
1997, 1217-1239. (c) Thompson, L. A.; Ellmann, J. A. Chem. Rev.
1996, 96, 555-600. (d) Krenak, V.; Holladay, M. W. Chem. Rev.
2002, 102, 61-92. (e) Mandal, B, Ghosh, P.; Basu, B. Topics in
Het. Chem. 2010, 22, 261-311. (f) Mo, L.; Wu, Y.; Liu, M.; Chen,
X.; Ding, Y.; Zhang, W. Adv. Mat. Res. 2014, 908, 215-219.
2. (a) Nefzi, A.; Otresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97,
449-472. (b) Franzen, R. G. J. Comb. Chem. 2000, 2, 195-214. (c)
Dolle, R. E.; Nelson, K. H. J. Comb. Chem. 1999, 1, 235-282. (d)
Van Maarseveen, J. H. Comb. Chem. High Throughput Screening
1998, 1, 185-214. (e) Gallop, M. A.; Barrett, R. W.; Dower, W. J.;